Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 62(12): e202300149, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36692366

ABSTRACT

Perovskite colloidal quantum wells (QWs) are promising to realize narrow deep-blue emission, but the poor optical performance and stability suppress their practical application. Here, we creatively propose a water-driven synthesis strategy to obtain size-homogenized and strongly confined deep-blue CsPbBr3 QWs, corresponding to three monolayers, which emit at the deep-blue wavelength of 456 nm. The water controls the orientation and distribution of the ligands on the surface of the nanocrystals, thus inducing orientated growth through the Ostwald ripening process by phagocytizing unstable nanocrystals to form well-crystallized QWs. These QWs present remarkable stability and high photoluminescence quantum yield of 94 %. Furthermore, we have prepared light-emitting diodes based on the QWs via the all-solution fabrication strategy, achieving an external quantum efficiency of 1 % and luminance of 2946 cd m-2 , demonstrating state-of-the-art brightness for perovskite QW-based LEDs.

2.
Adv Mater ; 36(15): e2310022, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38088447

ABSTRACT

Within the intersection of materials science and nanoscience/technology, extremely downsized (including quantum-sized and subnanometer-sized) materials attract increasing interest. However, the effective and controllable production of extremely downsized materials through physical strategies remains a great challenge. Herein, an all-physical top-down method for the production of sub-1 nm graphene with completely broken lattice is reported. The graphene subnanometer materials (GSNs) with monolayer structures and lateral sizes of ≈0.5 nm are obtained. Compared with their bulk, nanosheets, and quantum sheets, the intrinsic GSNs present extremely enhanced photoluminescence and nonlinear saturation absorption performances, as well as unique carrier behavior. The non-equilibrium states induced by the entirely exposed and broken, intrinsic lattices in sub-1 nm graphene can be determinative to their extreme performances. This work shows the great potential of broken lattice and provides new insights toward subnanometer materials.

SELECTION OF CITATIONS
SEARCH DETAIL