Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.132
Filter
Add more filters

Publication year range
1.
PLoS Pathog ; 19(4): e1011222, 2023 04.
Article in English | MEDLINE | ID: mdl-37014912

ABSTRACT

Endogenous retroviruses (ERVs) are the relics of ancient retroviruses occupying a substantial fraction of vertebrate genomes. However, knowledge about the functional association of ERVs with cellular activities remains limited. Recently, we have identified approximately 3,315 ERVs from zebrafish at genome-wide level, among which 421 ERVs were actively expressed in response to the infection of Spring viraemia of carp virus (SVCV). These findings demonstrated the previously unrecognized activity of ERVs in zebrafish immunity, thereby making zebrafish an attractive model organism for deciphering the interplay among ERVs, exogenous invading viruses, and host immunity. In the present study, we investigated the functional role of an envelope protein (Env38) derived from an ERV-E5.1.38-DanRer element in zebrafish adaptive immunity against SVCV in view of its strong responsiveness to SVCV infection. This Env38 is a glycosylated membrane protein mainly distributed on MHC-II+ antigen-presenting cells (APCs). By performing blockade and knockdown/knockout assays, we found that the deficiency of Env38 markedly impaired the activation of SVCV-induced CD4+ T cells and thereby led to the inhibition of IgM+/IgZ+ B cell proliferation, IgM/IgZ Ab production, and zebrafish defense against SVCV challenge. Mechanistically, Env38 activates CD4+ T cells by promoting the formation of pMHC-TCR-CD4 complex via cross-linking MHC-II and CD4 molecules between APCs and CD4+ T cells, wherein the surface subunit (SU) of Env38 associates with the second immunoglobin domain of CD4 (CD4-D2) and the first α1 domain of MHC-IIα (MHC-IIα1). Notably, the expression and functionality of Env38 was strongly induced by zebrafish IFNφ1, indicating that env38 acts as an IFN-stimulating gene (ISG) regulated by IFN signaling. To the best of our knowledge, this study is the first to identify the involvement of an Env protein in host immune defense against an exogenous invading virus by promoting the initial activation of adaptive humoral immunity. It improved the current understanding of the cooperation between ERVs and host adaptive immunity.


Subject(s)
Endogenous Retroviruses , Fish Diseases , Rhabdoviridae Infections , Rhabdoviridae , Animals , Zebrafish , Immunity, Humoral , Immunoglobulin M , Fish Diseases/genetics
2.
Plant Physiol ; 194(4): 2301-2321, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38048404

ABSTRACT

Field and greenhouse studies attempting to describe the molecular responses of plant species under waterlogging (WL) combined with salinity (ST) are almost nonexistent. We integrated transcriptional, metabolic, and physiological responses involving several crucial transcripts and common differentially expressed genes and metabolites in fragrant rosewood (Dalbergia odorifera) leaflets to dissect plant-specific molecular responses and patterns under WL combined with ST (SWL). We discovered that the synergistic pattern of the transcriptional response of fragrant rosewood under SWL was exclusively characterized by the number of regulated transcripts. The response patterns under SWL based on transcriptome and metabolome regulation statuses revealed different patterns (additive, dominant, neutral, minor, unilateral, and antagonistic) of transcripts or metabolites that were commonly regulated or expressed uniquely under SWL. Under SWL, the synergistic transcriptional response of several functional gene subsets was positively associated with several metabolomic and physiological responses related to the shutdown of the photosynthetic apparatus and the extensive degradation of starch into saccharides through α-amylase, ß-amylase, and α-glucosidase or plastoglobuli accumulation. The dissimilarity between the regulation status and number of transcripts in plants under combined stresses led to nonsynergistic responses in several physiological and phytohormonal traits. As inferred from the impressive synergistic transcriptional response to morpho-physiological changes, combined stresses exhibited a gradually decreasing effect on the changes observed at the molecular level compared to those in the morphological one. Here, by characterizing the molecular responses and patterns of plant species under SWL, our study considerably improves our understanding of the molecular mechanisms underlying combined stress.


Subject(s)
Dalbergia , Dalbergia/genetics , Salinity , Transcriptome/genetics , Phenotype , Metabolomics , Stress, Physiological/genetics
3.
J Immunol ; 211(5): 816-835, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37486225

ABSTRACT

Programmed death-ligand 1/programmed cell death 1 (PD-L1/PD-1) is one of the most important immune checkpoints in humans and other mammalian species. However, the occurrence of the PD-L1/PD-1 checkpoint in evolutionarily ancient vertebrates remains elusive because of the absence of a PD-1 homolog before its appearance in tetrapods. In this article, we identified, to our knowledge, a novel PD-L1/B and T lymphocyte attenuator (BTLA) checkpoint in zebrafish by using an Edwardsiella tarda-induced bacterial infection model. Results showed that zebrafish (Danio rerio) PD-L1 (DrPD-L1) and BTLA (DrBTLA) were differentially upregulated on MHC class II+ macrophages (Mϕs) and CD8+ T cells in response to E. tarda infection. DrPD-L1 has a strong ability to interact with DrBTLA, as shown by the high affinity (KD = 5.68 nM) between DrPD-L1/DrBTLA proteins. Functionally, the breakdown of DrPD-L1/DrBTLA interaction significantly increased the cytotoxicity of CD8+BTLA+ T cells to E. tarda-infected PD-L1+ Mϕ cells and reduced the immune escape of E. tarda from the target Mϕ cells, thereby enhancing the antibacterial immunity of zebrafish against E. tarda infection. Similarly, the engagement of DrPD-L1 by soluble DrBTLA protein diminished the tolerization of CD8+ T cells to E. tarda infection. By contrast, DrBTLA engagement by a soluble DrPD-L1 protein drives aberrant CD8+ T cell responses. These results were finally corroborated in a DrPD-L1-deficient (PD-L1-/-) zebrafish model. This study highlighted a primordial PD-L1/BTLA coinhibitory axis that regulates CD8+ T cell activation in teleost fish and may act as an alternative to the PD-L1/PD-1 axis in mammals. It also revealed a previously unrecognized strategy for E. tarda immune evasion by inducing CD8+ T cell tolerance to target Mϕ cells through eliciting the PD-L1/BTLA checkpoint pathway.


Subject(s)
B7-H1 Antigen , Zebrafish , Humans , Animals , B7-H1 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , CD8-Positive T-Lymphocytes , Mammals , Receptors, Immunologic/metabolism
4.
Eur Heart J ; 45(25): 2235-2250, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38607560

ABSTRACT

BACKGROUND AND AIMS: Patients with acute myeloid leukaemia (AML) suffer from severe myocardial injury during daunorubicin (DNR)-based chemotherapy and are at high risk of cardiac mortality. The crosstalk between tumour cells and cardiomyocytes might play an important role in chemotherapy-related cardiotoxicity, but this has yet to be demonstrated. This study aimed to identify its underlying mechanism and explore potential therapeutic targets. METHODS: Cardiac tissues were harvested from an AML patient after DNR-based chemotherapy and were subjected to single-nucleus RNA sequencing. Cardiac metabolism and function were evaluated in AML mice after DNR treatment by using positron emission tomography, magnetic resonance imaging, and stable-isotope tracing metabolomics. Plasma cytokines were screened in AML mice after DNR treatment. Genetically modified mice and cell lines were used to validate the central role of the identified cytokine and explore its downstream effectors. RESULTS: In the AML patient, disruption of cardiac metabolic homeostasis was associated with heart dysfunction after DNR-based chemotherapy. In AML mice, cardiac fatty acid utilization was attenuated, resulting in cardiac dysfunction after DNR treatment, but these phenotypes were not observed in similarly treated tumour-free mice. Furthermore, tumour cell-derived interleukin (IL)-1α was identified as a primary factor leading to DNR-induced cardiac dysfunction and administration of an anti-IL-1α neutralizing antibody could improve cardiac functions in AML mice after DNR treatment. CONCLUSIONS: This study revealed that crosstalk between tumour cells and cardiomyocytes during chemotherapy could disturb cardiac energy metabolism and impair heart function. IL-1α neutralizing antibody treatment is a promising strategy for alleviating chemotherapy-induced cardiotoxicity in AML patients.


Subject(s)
Daunorubicin , Interleukin-1alpha , Leukemia, Myeloid, Acute , Animals , Leukemia, Myeloid, Acute/drug therapy , Humans , Interleukin-1alpha/metabolism , Mice , Cardiotoxicity/etiology , Antibiotics, Antineoplastic/adverse effects , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism
5.
Genomics ; 116(1): 110764, 2024 01.
Article in English | MEDLINE | ID: mdl-38113974

ABSTRACT

Sorafenib is currently the first-line treatment for patients with advanced liver cancer, but its therapeutic efficacy declines significantly after a few months of treatment. Therefore, it is of great importance to investigate the regulatory mechanisms of sorafenib sensitivity in liver cancer cells. In this study, we provided initial evidence demonstrating that circPHKB, a novel circRNA markedly overexpressed in sorafenib-treated liver cancer cells, attenuated the sensitivity of liver cancer cells to sorafenib. Mechanically, circPHKB sequestered miR-1234-3p, resulting in the up-regulation of cytochrome P450 family 2 subfamily W member 1 (CYP2W1), thereby reducing the killing effect of sorafenib on liver cancer cells. Moreover, knockdown of circPHKB sensitized liver cancer cells to sorafenib in vivo. The findings reveal a novel circPHKB/miR-1234-3p/CYP2W1 pathway that decreases the sensitivity of liver cancer cells to sorafenib, suggesting that circPHKB and the axis may serve as promising targets to improve the therapeutic efficacy of sorafenib against liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , MicroRNAs/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Up-Regulation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Drug Resistance, Neoplasm , Cytochrome P450 Family 2/genetics
6.
Am Heart J ; 269: 131-138, 2024 03.
Article in English | MEDLINE | ID: mdl-38128898

ABSTRACT

BACKGROUND: Nearly 20% Patients with cyanotic congenital heart disease (CCHD) are not able to receive surgery. These patients experience a decline in cardiac function as they age, which has been demonstrated to be associated with changes in energy metabolism in cardiomyocytes. Trimetazidine (TMZ), a metabolic regulator, is supposed to alleviate such maladaptation and reserve cardiac function in CCHD patients. METHODS: This is a randomized, double-blind, placebo-controlled clinical trial. Eighty adult CCHD patients will be recruited and randomized to the TMZ (20 mg TMZ 3 times a day for 3 months) or placebo group (placebo 3 times a day for 3 months). The primary outcome is the difference in cardiac ejection fractions (EF) measured by cardiac magnetic resonance (MRI) between baseline and after 3 months of TMZ treatment. The secondary outcomes include TMZ serum concentration, rate of cardiac events, NYHA grading, fingertip SpO2, NT-proBNP levels, 6-minute walking test (6MWT), KCCQ-CSS questionnaire score, echocardiography, ECG, routine blood examination, liver and kidney function test, blood pressure and heart rate. DISCUSSION: This trial is designed to explore whether the application of TMZ in adult CCHD patients can improve cardiac function, reduce cardiac events, and improve exercise performance and quality of life. The results will provide targeted drug therapy for CCHD patients with hypoxia and support the application of TMZ in children with CCHD.


Subject(s)
Cardiovascular Diseases , Heart Defects, Congenital , Trimetazidine , Adult , Child , Humans , Trimetazidine/therapeutic use , Quality of Life , Hypoxia/etiology , Heart Defects, Congenital/complications , Heart Defects, Congenital/drug therapy , Cardiovascular Diseases/drug therapy , Double-Blind Method , Vasodilator Agents/therapeutic use , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
7.
Mol Carcinog ; 63(4): 663-676, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38197534

ABSTRACT

Gastric cancer (GC) constitutes substantial cancer mortality worldwide. Several cancer types aberrantly express bone marrow stromal cell antigen 2 (BST2), yet its functional and underlying mechanisms in GC progression remain unknown. In our study, RNA sequencing data revealed that BST2 was transcriptionally activated by homeobox D9 (HOXD9). BST2 was significantly upregulated in GC tissues and promoted epithelial-mesenchymal transition and metastasis of GC. BST2 knockdown reversed HOXD9's oncogenic effect on GC metastasis. Moreover, BST2 messenger RNA stability could be enhanced by poly(A) binding protein cytoplasmic 1 (PABPC1) through the interaction between BST2 3'-UTR and PABPC1 in GC cells. PABPC1 promoted GC metastasis, which BST2 silencing attenuated in vitro and in vivo. In addition, positive correlations among HOXD9, BST2, and PABPC1 were established in clinical samples. Taken together, increased expression of BST2 induced by HOXD9 synergizing with PABPC1 promoted GC cell migration and invasion capacity.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , RNA-Binding Proteins , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , RNA , Cell Proliferation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Neoplasm Proteins , Homeodomain Proteins/genetics , Bone Marrow Stromal Antigen 2
8.
BMC Neurosci ; 25(1): 39, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39187754

ABSTRACT

The trail making test (TMT) is a commonly used tool for evaluating executive functions, and the activation of cerebral oxygenation in the prefrontal cortex (PFC) during the test can reflect the participation of executive function. This study aimed to compare the differences in cerebral oxygenation in the PFC between the computer- and paper-based versions of the TMT and provide a theoretical basis for the optimization and clinical application of the computer-based version. A total of 32 healthy adult participants completed the computer- and paper-based TMT Types A and B. Cerebral oxygenation changes in the PFC were monitored during the experiment using near-infrared spectroscopy. Moreover, average changes in oxyhemoglobin (Δoxy-Hb) levels at the baseline and during activation periods in different types of testing were compared and analyzed. The number of correct connections in the computer-based version Type B was less than that in the paper-based version Type B (p < .001). The task time of the computer-based version was longer than that of the paper-based version (p < .001). The B/A ratio of the number of correct connections in the computer-based version was lower than that in the paper-based version (p < .001). The Δoxy-Hb in the PFC of the paper-based version was higher than that of the computer-based version (p < .001). Significant differences in oxygenation in the PFC were observed between the paper- and computer-based versions of TMT. After further improvement and correction in the subsequent development of the computer-based TMT, and taking into account the psychological feelings and preferences of the participants when performing different versions of the TMTs, the computer-based TMT is expected to play a good auxiliary role in clinical evaluation.


Subject(s)
Prefrontal Cortex , Spectroscopy, Near-Infrared , Trail Making Test , Humans , Prefrontal Cortex/metabolism , Male , Female , Spectroscopy, Near-Infrared/methods , Young Adult , Adult , Oxygen/metabolism , Oxygen/blood , Executive Function/physiology , Oxyhemoglobins/metabolism , Oxyhemoglobins/analysis
9.
FASEB J ; 37(6): e22951, 2023 06.
Article in English | MEDLINE | ID: mdl-37227178

ABSTRACT

Teleost fish are indispensable model organisms for comparative immunology research that should lead to an improved understanding of the general principles of vertebrate immune system design. Although numerous studies on fish immunology have been conducted, knowledge about the cell types that orchestrate piscine immune systems remains limited. Here, we generated a comprehensive atlas of immune cell types in zebrafish spleen on the basis of single-cell transcriptome profiling. We identified 11 major categories from splenic leukocyte preparations, including neutrophils, natural killer cells, macrophages/myeloid cells, T cells, B cells, hematopoietic stem and progenitor cells, mast cells, remnants of endothelial cells, erythroid cells, erythroid progenitors, and a new type of serpin-secreting cells. Notably, we derived 54 potential subsets from these 11 categories. These subsets showed differential responses to spring viremia of carp virus (SVCV) infection, implying that they have diverse roles in antiviral immunity. Additionally, we landscaped the populations with the induced expression of interferons and other virus-responsive genes. We found that trained immunity can be effectively induced in the neutrophil and M1-macrophage subsets by vaccinating zebrafish with inactivated SVCV. Our findings illustrated the complexity and heterogeneity of the fish immune system, which will help establish a new paradigm for the improved understanding of fish immunology.


Subject(s)
Rhabdoviridae Infections , Zebrafish , Animals , Zebrafish/genetics , Spleen , Endothelial Cells , Gene Expression Profiling
10.
Inflamm Res ; 73(1): 83-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38070057

ABSTRACT

OBJECTIVE: Emerging studies have revealed that macrophages possess different dependences on the uptake, synthesis, and metabolism of serine for their activation and functionalization, necessitating our insight into how serine availability and utilization impact macrophage activation and inflammatory responses. METHODS: This article summarizes the reports published domestically and internationally about the serine uptake, synthesis, and metabolic flux by the macrophages polarizing with distinct stimuli and under different pathologic conditions, and particularly analyzes how altered serine metabolism rewires the metabolic behaviors of polarizing macrophages and their genetic and epigenetic reprogramming. RESULTS: Macrophages dynamically change serine metabolism to orchestrate their anabolism, redox balance, mitochondrial function, epigenetics, and post-translation modification, and thus match the distinct needs for both classical and alternative activation. CONCLUSION: Serine metabolism coordinates multiple metabolic pathways to tailor macrophage polarization and their responses to different pathogenic attacks and thus holds the potential as therapeutic target for types of acute and chronic inflammatory diseases.


Subject(s)
Macrophage Activation , Macrophages , Macrophages/metabolism , Metabolic Networks and Pathways , Epigenesis, Genetic
11.
Physiol Plant ; 176(3): e14355, 2024.
Article in English | MEDLINE | ID: mdl-38783519

ABSTRACT

Fusarium solani exerts detrimental effects on plant growth, which is one of the reasons for the incidence of apple replant disease. Arbuscular mycorrhizal fungi (AMF) enhance plant resistance to Fusarium wilt; however, the mechanism remains poorly understood. Therefore, the present study investigated the symbiosis between apple and AMF and explored the physiology, especially nitrate metabolism, antioxidant defense, and photosynthetic performance, when infected by F. solani. The experiment was carried out with four treatments, namely -AMF - F. solani, -AMF + F. solani, -AMF + F. solani, and + AMF + F. solani. In this study, the -AMF + F. solani treatment increased the activity of enzymes associated with nitrogen metabolism, such as the nitrate and nitrite reductases, in the apple root system. The +AMF + F. solani treatment showed higher antioxidant enzyme activities than the -AMF + F. solani by F. solani infection. The apple seedlings of the +AMF + F. solani treatment decreased reactive oxygen accumulation and reduced the oxidative damages triggered by F. solani infection. The improvement in antioxidant capacity due to the +AMF + F. solani treatment was closely associated with the upregulation of genes related to the antioxidant system. The F. solani infection greatly damaged the photosynthetic process, while the +AMF + F. solani treatment significantly improved it compared to the -AMF + F. solani treatment. In conclusion, the study demonstrated that the apple-AMF symbiosis plays an active role in regulating the resistance against F. solani infection by enhancing defense response and nitrogen metabolism.


Subject(s)
Fusarium , Malus , Mycorrhizae , Nitrogen , Plant Diseases , Symbiosis , Fusarium/physiology , Fusarium/pathogenicity , Mycorrhizae/physiology , Nitrogen/metabolism , Malus/microbiology , Malus/genetics , Malus/metabolism , Malus/physiology , Malus/immunology , Plant Diseases/microbiology , Plant Diseases/immunology , Disease Resistance/genetics , Antioxidants/metabolism , Plant Roots/microbiology , Plant Roots/genetics , Plant Roots/physiology , Plant Roots/metabolism , Photosynthesis , Seedlings/microbiology , Seedlings/physiology , Seedlings/genetics
12.
Int J Equity Health ; 23(1): 159, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39138482

ABSTRACT

BACKGROUND: Since 2020, China has piloted an innovative payment method known as the Diagnosis-Intervention Packet (DIP). This study aimed to assess the impact of the DIP on inpatient volume and bed allocation and their regional distribution. This study investigated whether the DIP affects the efficiency of regional health resource utilization and contributes to disparities in health equity among regions. METHODS: We collected data from a central province in China from 2019 to 2022. The treatment group included 508 hospitals in the pilot area (Region A, where the DIP was implemented in 2021), whereas the control group consisted of 3,728 hospitals from non-pilot areas within the same province. We employed the difference-in-differences method to analyze inpatient volume and bed resources. Additionally, we conducted a stratified analysis to examine whether the effects of DIP implementation varied across urban and rural areas or hospitals of different levels. RESULTS: Compared with the non-pilot regions, Region A experienced a statistically significant reduction in inpatient volume of 14.3% (95% CI 0.061-0.224) and a notable decrease of 9.1% in actual available bed days (95% CI 0.041-0.141) after DIP implementation. The study revealed no evidence of patient consultations shifting from inpatient to outpatient services due to the reduction in hospital admissions in Region A after DIP implementation. Stratified analysis revealed that inpatient volume decreased by 12.4% (95% CI 0.006-0.243) in the urban areas and 14.7% in the rural areas of Region A (95% CI 0.051-0.243). At the hospital level, primary hospitals experienced the greatest impact, with a 19.0% (95% CI 0.093-0.287) decline in inpatient volume. Furthermore, primary and tertiary hospitals experienced significant reductions of 11.0% (95% CI 0.052-0.169) and 8.2% (95% CI 0.002-0.161), respectively, in actual available bed days. CONCLUSIONS: Despite efforts to curb excessive medical service expansion in the region following DIP implementation, large hospitals continue to attract a large number of patients from primary hospitals. This weakening of primary hospitals and the subsequent influx of patients to urban areas may further limit rural patients' access to medical services. The implementation of the DIP may raise concerns about its impact on health care equality and accessibility, particularly for underserved rural populations.


Subject(s)
Inpatients , Humans , China , Inpatients/statistics & numerical data , Hospitalization/statistics & numerical data , Hospitalization/economics
13.
Int J Equity Health ; 23(1): 115, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840102

ABSTRACT

BACKGROUND: Since 2020, China has implemented an innovative payment method called Diagnosis-Intervention Packet (DIP) in 71 cities nationwide. This study aims to assess the impact of DIP on medical expenditure, efficiency, and quality for inpatients covered by the Urban Employee Basic Medical Insurance (UEBMI) and Urban and Rural Residents Basic Medical Insurance (URRBMI). It seeks to explore whether there are differences in these effects among inpatients of the two insurance types, thereby further understanding its implications for health equity. MATERIALS AND METHODS: We conducted interrupted time series analyses on outcome variables reflecting medical expenditure, efficiency, and quality for both UEBMI and URRBMI inpatients, based on a dataset comprising 621,125 inpatient reimbursement records spanning from June 2019 to June 2023 in City A. This dataset included 110,656 records for UEBMI inpatients and 510,469 records for URRBMI inpatients. RESULTS: After the reform, the average expenditure per hospital admission for UEBMI inpatients did not significantly differ but continued to follow an upward pattern. In contrast, for URRBMI inpatients, the trend shifted from increasing before the reform to decreasing after the reform, with a decline of 0.5%. The average length of stay for UEBMI showed no significant changes after the reform, whereas there was a noticeable downward trend in the average length of stay for URRBMI. The out-of-pocket expenditure (OOP) per hospital admission, 7-day all-cause readmission rate and 30-day all-cause readmission rate for both UEBMI and URRBMI inpatients showed a downward trend after the reform. CONCLUSION: The DIP reform implemented different upper limits on budgets based on the type of medical insurance, leading to varying post-treatment prices for UEBMI and URRBMI inpatients within the same DIP group. After the DIP reform, the average expenditure per hospital admission and the average length of stay remained unchanged for UEBMI inpatients, whereas URRBMI inpatients experienced a decrease. This trend has sparked concerns about hospitals potentially favoring UEBMI inpatients. Encouragingly, both UEBMI and URRBMI inpatients have seen positive outcomes in terms of alleviating patient financial burdens and enhancing the quality of care.


Subject(s)
Health Expenditures , Inpatients , Insurance, Health , Humans , Health Expenditures/statistics & numerical data , China , Insurance, Health/economics , Inpatients/statistics & numerical data , Quality of Health Care/standards , Pilot Projects , Interrupted Time Series Analysis , Male , Female
14.
J Immunol ; 208(12): 2686-2701, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35675955

ABSTRACT

The establishment of an appropriate costimulatory phenotype is crucial for dendritic cells (DCs) to maintain a homeostatic state with optimal immune surveillance and immunogenic activities. The upregulation of CD80/86 and CD40 is a hallmark costimulatory phenotypic switch of DCs from a steady state to an activated one for T cell activation. However, knowledge of the regulatory mechanisms underlying this process remains limited. In this study, we identified a Zbtb46 homolog from a zebrafish model. Zbtb46 deficiency resulted in upregulated cd80/86 and cd40 expression in kidney marrow-derived DCs (KMDCs) of zebrafish, which was accompanied with a remarkable expansion of CD4+/CD8+ T cells and accumulation of KMDCs in spleen of naive fish. Zbtb46 -/- splenic KMDCs exhibited strong stimulatory activity for CD4+ T cell activation. Chromatin immunoprecipitation-quantitative PCR and mass spectrometry assays showed that Zbtb46 was associated with promoters of cd80/86 and cd40 genes by binding to a 5'-TGACGT-3' motif in resting KMDCs, wherein it helped establish a repressive histone epigenetic modification pattern (H3K4me0/H3K9me3/H3K27me3) by organizing Mdb3/organizing nucleosome remodeling and deacetylase and Hdac3/nuclear receptor corepressor 1 corepressor complexes through the recruitment of Hdac1/2 and Hdac3. On stimulation with infection signs, Zbtb46 disassociated from the promoters via E3 ubiquitin ligase Cullin1/Fbxw11-mediated degradation, and this reaction can be triggered by the TLR9 signaling pathway. Thereafter, cd80/86 and cd40 promoters underwent epigenetic reprogramming from the repressed histone modification pattern to an activated pattern (H3K4me3/H3K9ac/H3K27ac), leading to cd80/86 and cd40 expression and DC activation. These findings revealed the essential role of Zbtb46 in maintaining DC homeostasis by suppressing cd80/86 and cd40 expression through epigenetic mechanisms.


Subject(s)
CD8-Positive T-Lymphocytes , Zebrafish , Animals , B7-1 Antigen/genetics , B7-1 Antigen/metabolism , CD40 Antigens , Cell Adhesion Molecules/metabolism , Dendritic Cells , Epigenesis, Genetic , Lymphocyte Activation
15.
J Fluoresc ; 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38396149

ABSTRACT

Recently, all-inorganic halide perovskite quantum dots (IPQD) as a new fluorescent material with excellent fluorescence properties have attracted wide attention. However, their instability in polar solvents is the main factor hindering their application in analysis. Herein, a heterozygous perovskite (CsPbBr3/Cs4PbBr6) was simultaneously prepared and stabilized by a silylanization strategy using (3-aminopropyl)-triethoxysilane (APTES) and cetyltrimethyl ammonium bromide (CTAB) assisted precipitation encapsulation method. The synthesized CsPbBr3/Cs4PbBr6 emitted an independent fluorescence at 520 nm. The obtained CsPbBr3/Cs4PbBr6 exhibited good stability in ethanol/water mixtures. It was used as a fluorescent probe for sensitively detecting iodide ions (I-) by fluorescence quenching mechanism in the concentration range of 1 ~ 70.0 µM with the detection limit (LOD) of 0.83 µM (relative standard deviation (RSD) = 1.33%, n = 20). The simplicity and high selectivity of the proposed fluorescent analysis method were the prominent features. This work could be extended to the other target ion detection by a perovskite fluorescent quenching.

16.
Nature ; 556(7700): 255-258, 2018 04.
Article in English | MEDLINE | ID: mdl-29618817

ABSTRACT

Cross-species transmission of viruses from wildlife animal reservoirs poses a marked threat to human and animal health 1 . Bats have been recognized as one of the most important reservoirs for emerging viruses and the transmission of a coronavirus that originated in bats to humans via intermediate hosts was responsible for the high-impact emerging zoonosis, severe acute respiratory syndrome (SARS) 2-10 . Here we provide virological, epidemiological, evolutionary and experimental evidence that a novel HKU2-related bat coronavirus, swine acute diarrhoea syndrome coronavirus (SADS-CoV), is the aetiological agent that was responsible for a large-scale outbreak of fatal disease in pigs in China that has caused the death of 24,693 piglets across four farms. Notably, the outbreak began in Guangdong province in the vicinity of the origin of the SARS pandemic. Furthermore, we identified SADS-related CoVs with 96-98% sequence identity in 9.8% (58 out of 591) of anal swabs collected from bats in Guangdong province during 2013-2016, predominantly in horseshoe bats (Rhinolophus spp.) that are known reservoirs of SARS-related CoVs. We found that there were striking similarities between the SADS and SARS outbreaks in geographical, temporal, ecological and aetiological settings. This study highlights the importance of identifying coronavirus diversity and distribution in bats to mitigate future outbreaks that could threaten livestock, public health and economic growth.


Subject(s)
Alphacoronavirus/isolation & purification , Alphacoronavirus/pathogenicity , Animal Diseases/epidemiology , Animal Diseases/virology , Chiroptera/virology , Coronavirus Infections/veterinary , Diarrhea/veterinary , Swine/virology , Alphacoronavirus/classification , Alphacoronavirus/genetics , Animal Diseases/transmission , Animals , Biodiversity , China/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Diarrhea/pathology , Diarrhea/virology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Genome, Viral/genetics , Humans , Jejunum/pathology , Jejunum/virology , Phylogeny , Severe Acute Respiratory Syndrome/epidemiology , Severe Acute Respiratory Syndrome/veterinary , Severe Acute Respiratory Syndrome/virology , Spatio-Temporal Analysis , Zoonoses/epidemiology , Zoonoses/transmission , Zoonoses/virology
17.
BMC Womens Health ; 24(1): 81, 2024 01 31.
Article in English | MEDLINE | ID: mdl-38297248

ABSTRACT

OBJECTIVE: To analyze recurrent factors in patients with clinical early-stage cervical cancer (ESCC) following hysterectomy and adjuvant radiotherapy. METHODS: We collected data from patients with ESCC, staged according to the 2009 Federation International of Gynecology and Obstetrics (FIGO) staging criteria, who underwent hysterectomy followed by adjuvant radiotherapy between 2012 and 2019. These patients were subsequently restaged using the 2018 FIGO criteria. Univariable and multivariable analyses, along with nomogram analyses, were conducted to explore factors associated with recurrence-free survival (RFS). RESULTS: A total of 310 patients met the inclusion criteria, with a median follow-up time of 46 months. Among them, 126 patients with ESCC were restaged to stage III C1 or III C2 after surgery due to lymph node metastasis (LNM) based on the 2018 FIGO staging criteria. Of these, 60 (19.3%) experienced relapse. The 1-, 3-, and 5-year RFS rates were 93.9%, 82.7%, and 79.3%, respectively. Multivariate analysis revealed that the number of positive lymph nodes (LNs), tumor diameter (TD) > 4 cm, and parametrial invasion (PI) were associated with recurrence. The nomogram indicated their predictive value for 3-year and 5-year RFS. Notably, the 5-year recurrence rate (RR) increased by 30.2% in patients with LNM, particularly those with ≥ 3 positive LNs (45.5%). Patients with stage III C2 exhibited a significantly higher RR than those with IIIC1 (56.5% vs. 24.3%, p < 0.001). The 5-year RFS for patients with TD > 4 cm was 65.8%, significantly lower than for those with TD ≤ 4 cm (88.2%). Subgroup analysis revealed higher 5-year RRs in patients with stage III C2 than that in patients with III-C1 (56.5% vs. 24.3%, p < 0.001), demonstrating a significant difference in the RFS survival curve. CONCLUSION: RR in patients with clinical ESCC after hysterectomy followed by adjuvant radiotherapy is correlated with the number of positive LNs, TD > 4 cm, and PI. Emphasis should be placed on the common high-risk factor of LNM association with recurrence after radical hysterectomy in ESCC.


Subject(s)
Uterine Cervical Neoplasms , Female , Humans , Radiotherapy, Adjuvant , Treatment Outcome , Disease-Free Survival , Uterine Cervical Neoplasms/pathology , Neoplasm Staging , Retrospective Studies , Neoplasm Recurrence, Local/pathology , Hysterectomy , Lymph Node Excision
18.
Mediators Inflamm ; 2024: 7524314, 2024.
Article in English | MEDLINE | ID: mdl-38725539

ABSTRACT

Objective: Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorganisms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods: Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the mechanism through which sorbitol-modulated M-cell differentiation. Results: Herein, in comparison to the mannitol group (control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand (RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion: These findings suggested that sorbitol suppressed intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4 was sufficient to induce M-cell development.


Subject(s)
Cyclic AMP Response Element-Binding Protein , Cyclic Nucleotide Phosphodiesterases, Type 4 , M Cells , RANK Ligand , Sorbitol , Animals , Male , Mice , Cell Differentiation/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Intestinal Mucosa/metabolism , M Cells/drug effects , Mice, Inbred C57BL , RANK Ligand/metabolism , Sorbitol/pharmacology
19.
BMC Health Serv Res ; 24(1): 496, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649910

ABSTRACT

BACKGROUND: China initiated the Medical Alliances (MAs) reform to enhance resource allocation efficiency and ensure equitable healthcare. In response to challenges posed by the predominance of public hospitals, the reform explores public-private partnerships within the MAs. Notably, private hospitals can now participate as either leading or member institutions. This study aims to evaluate the dynamic shifts in market share between public and private hospitals across diverse MAs models. METHODS: Data spanning April 2017 to March 2019 for Dangyang County's MA and January 2018 to December 2019 for Qianjiang County's MA were analyzed. Interrupted periods occurred in April 2018 and January 2019. Using independent sample t-tests, chi-square tests, and interrupted time series analysis (ITSA), we compared the proportion of hospital revenue, the proportion of visits for treatment, and the average hospitalization days of discharged patients between leading public hospitals and leading private hospitals, as well as between member public hospitals and member private hospitals before and after the reform. RESULTS: After the MAs reform, the revenue proportion decreased for leading public and private hospitals, while member hospitals saw an increase. However, ITSA revealed a notable rise trend in revenue proportion for leading private hospitals (p < 0.001), with a slope of 0.279% per month. Member public and private hospitals experienced decreasing revenue proportions, with outpatient visits proportions declining in member public hospitals by 0.089% per month (p < 0.05) and inpatient admissions proportions dropping in member private hospitals by 0.752% per month (p < 0.001). The average length of stay in member private hospitals increased by 0.321 days per month after the reform (p < 0.01). CONCLUSIONS: This study underscores the imperative to reinforce oversight and constraints on leading hospitals, especially private leading hospitals, to curb the trend of diverting patients from member hospitals. At the same time, for private hospitals that are at a disadvantage in competition and may lead to unreasonable prolongation of hospital stay, this kind of behavior can be avoided by strengthening supervision or granting leadership.


Subject(s)
Hospitals, Private , Hospitals, Public , Interrupted Time Series Analysis , China , Hospitals, Public/statistics & numerical data , Hospitals, Private/statistics & numerical data , Hospitals, Private/economics , Humans , Health Care Reform , Public-Private Sector Partnerships
20.
Afr J Reprod Health ; 28(2): 43-54, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425153

ABSTRACT

Polycystic ovary syndrome (PCOS), as an endocrine and metabolic disorder, affects approximately 6% -20% of women of childbearing age. This study aims to assess the therapeutic effects of Metformin combined with vitamin D in PCOS patients. Eight databases were searched to obtain randomized controlled trials, both domestically and internationally, on the effects of Metformin combined with vitamin D in patients with PCOS. Data analysis was performed using RevMan 5.3 software. Nine studies were ultimately included in this meta-analysis. Six studies reported the homeostatic model assessment for insulin resistance of the test group and the control group, which was significantly lower (SMD: -0.23; 95% Cl: -0.42,-0.04; P<0.05) than the control group, body mass index (BMI) (SMD: -1.86; 95% Cl: -2.77,-0.96; P<0.01), Serum 25 (OH) D (SMD: 14.28; 95% Cl: 12.26,16.29; P<0.01), testosterone (SMD: -0.11; 95% Cl: -0.15,-0.07; P<0.01) and regulated menstrual cycles (OR: 1.27; 95% Cl: 0.99,1.63; P=0.063). Our meta-analysis of nine trials demonstrates significant reductions in insulin resistance, BMI, and testosterone levels, along with increased serum vitamin D levels and improved menstrual cycle regulation after Metformin and vitamin D treatment. These findings suggest the potential of this combined therapy in managing the multifaceted aspects of PCOS.


Le syndrome des ovaires polykystiques (SOPK), en tant que trouble endocrinien et métabolique, touche environ 6 à 20 % des femmes en âge de procréer. Cette étude vise à évaluer les effets thérapeutiques de la metformine associée à la vitamine D chez les patients atteints du SOPK. Huit bases de données ont été consultées pour obtenir des essais contrôlés randomisés, tant au niveau national qu'international, sur les effets de la metformine associée à la vitamine D chez les patients atteints du SOPK. L'analyse des données a été réalisée à l'aide du logiciel RevMan 5.3. Neuf études ont finalement été incluses dans cette méta-analyse. Six études ont rapporté l'évaluation du modèle homéostatique pour la résistance à l'insuline du groupe test et du groupe témoin, qui était significativement inférieure (DMS : -0,23 ; IC à 95 % : -0,42, -0,04 ; P <0,05) par rapport au groupe témoin, la masse corporelle indice (IMC) (DMS : -1,86 ; Cl 95 % : -2,77, -0,96 ; P<0,01), Sérum 25 (OH) D (SMD : 14,28 ; Cl 95 % : 12,26,16,29 ; P<0,01), testostérone (DMS : -0,11 ; Cl à 95 % : -0,15, -0,07 ; P<0,01) et cycles menstruels régulés (OR : 1,27 ; Cl à 95 % : 0,99, 1,63 ; P=0,063). Notre méta-analyse de neuf essais démontre des réductions significatives de la résistance à l'insuline, de l'IMC et des taux de testostérone, ainsi qu'une augmentation des taux sériques de vitamine D et une amélioration de la régulation du cycle menstruel après un traitement à la metformine et à la vitamine D. Ces résultats suggèrent le potentiel de cette thérapie combinée dans la gestion des aspects multiformes du SOPK.


Subject(s)
Metformin , Polycystic Ovary Syndrome , Vitamin D , Female , Humans , Hypoglycemic Agents/therapeutic use , Insulin Resistance/physiology , Metformin/therapeutic use , Polycystic Ovary Syndrome/drug therapy , Testosterone/metabolism , Vitamin D/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL