Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters

Country/Region as subject
Affiliation country
Publication year range
1.
N Engl J Med ; 382(13): 1199-1207, 2020 03 26.
Article in English | MEDLINE | ID: mdl-31995857

ABSTRACT

BACKGROUND: The initial cases of novel coronavirus (2019-nCoV)-infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. METHODS: We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. RESULTS: Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). CONCLUSIONS: On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.).


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Transmission, Infectious/statistics & numerical data , Epidemics , Infectious Disease Incubation Period , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Adolescent , Adult , Aged , Betacoronavirus/genetics , COVID-19 , China/epidemiology , Communicable Disease Control/methods , Coronavirus Infections/virology , Disease Transmission, Infectious/prevention & control , Epidemics/prevention & control , Female , Humans , Incidence , Male , Middle Aged , Pandemics , Pneumonia, Viral/virology , Polymerase Chain Reaction , SARS-CoV-2 , Young Adult
2.
J Med Virol ; 95(1): e28353, 2023 01.
Article in English | MEDLINE | ID: mdl-36443103

ABSTRACT

Research assessing the changing epidemiology of infectious diseases in China after the implementation of new healthcare reform in 2009 was scarce. We aimed to get the latest trends and disparities of national notifiable infectious diseases by age, sex, province, and season in China from 2010 to 2019. The number of incident cases and deaths, incidence rate, and mortality of 44 national notifiable infectious diseases by sex, age groups, and provincial regions from 2010 to 2019 were extracted from the China Information System for Disease Control and Prevention and official reports and divided into six kinds of infectious diseases by transmission routes and three classes (A-C) in this descriptive study. Estimated annual percentage changes (EAPCs) were calculated to quantify the temporal trends of incidence and mortality rate. We calculated the concentration index to measure economic-related inequality. Segmented interrupted time-series analysis was used to estimate the impact of the COVID-19 pandemic on the epidemic of notifiable infectious diseases. The trend of incidence rate on six kinds of infectious diseases by transmission routes was stable, while only mortality of sexual, blood-borne, and mother-to-child-borne infectious diseases increased from 0.6466 per 100 000 population in 2010 to 1.5499 per 100 000 population in 2019 by 8.76% per year (95% confidence interval [CI]: 6.88-10.68). There was a decreasing trend of incidence rate on Class-A infectious diseases (EAPC = -16.30%; 95% CI: -27.93 to -2.79) and Class-B infectious diseases (EAPC = -1.05%; 95% CI: -1.56 to -0.54), while an increasing trend on Class-C infectious diseases (EAPC = 6.22%; 95% CI: 2.13-10.48). For mortality, there was a decreasing trend on Class-C infectious diseases (EAPC = -14.76%; 95% CI: -23.46 to -5.07), and an increasing trend on Class-B infectious diseases (EAPC = 4.56%; 95% CI: 2.44-6.72). In 2019, the infectious diseases with the highest incidence rate and mortality were respiratory diseases (340.95 per 100 000 population), and sexual, blood-borne, and mother-to-child-borne infectious diseases (1.5459 per 100 000 population), respectively. The greatest increasing trend of incidence rate was observed in seasonal influenza, from 4.83 per 100 000 population in 2010 to 253.36 per 100 000 population in 2019 by 45.16% per year (95% CI: 29.81-62.33), especially among females and children aged 0-4 years old. The top disease with the highest mortality was still AIDs, which had the highest average yearly mortality in 24 provinces from 2010 to 2019, and its incidence rate (EAPC = 14.99%; 95% CI: 8.75-21.59) and mortality (EAPC = 9.65; 95%CI: 7.71-11.63) both increased from 2010 to 2019, especially among people aged 44-59 years old and 60 or older. Male incidence rate and mortality were higher than females each year from 2010 to 2018 on 29 and 10 infectious diseases, respectively. Additionally, sex differences in the incidence and mortality of AIDS were becoming larger. The curve lay above the equality line, with the negative value of the concentration index, which indicated that economic-related health disparities exist in the distribution of incidence rate and mortality of respiratory diseases (incidence rate: the concentration index = -0.063, p < 0.0001; mortality: the concentration index = -0.131, p < 0.001), sexual, blood-borne, and mother-to-child-borne infectious diseases (incidence rate: the concentration index = -0.039, p = 0.0192; mortality: the concentration index = -0.207, p < 0.0001), and the inequality disadvantageous to the poor (pro-rich). Respiratory diseases (Dec-Jan), intestinal diseases (May-Jul), zoonotic infectious diseases (Mar-Jul), and vector-borne infectious diseases (Sep-Oct) had distinct seasonal epidemic patterns. In addition, segmented interrupted time-series analyses showed that, after adjusting for potential seasonality, autocorrelation, GDP per capita, number of primary medical institutions, and other factors, there was no significant impact of COVID-19 epidemic on the monthly incidence rate of six kinds of infectious diseases by transmission routes from 2018 to 2020 (all p > 0.05). The incidence rates of six kinds of infectious diseases were stable in the past decade, and incidence rates of Class-A and Class-B infectious diseases were decreasing because of comprehensive prevention and control measures and a strengthened health system after the implementation of the new healthcare reform in China since 2009. However, age, gender, regional, and economic disparities were still observed. Concerted efforts are needed to reduce the impact of seasonal influenza (especially among children aged 0-4 years old) and the mortality of AIDs (especially among people aged 44-59 years old and 60 or older). More attention should be paid to the disparities in the burden of infectious diseases.


Subject(s)
Acquired Immunodeficiency Syndrome , COVID-19 , Communicable Diseases , Influenza, Human , Female , Male , Humans , Infant, Newborn , Infant , Child, Preschool , Adult , Middle Aged , Influenza, Human/epidemiology , Pandemics , Acquired Immunodeficiency Syndrome/epidemiology , COVID-19/epidemiology , Infectious Disease Transmission, Vertical , Communicable Diseases/epidemiology , Incidence , China/epidemiology
3.
BMC Infect Dis ; 19(1): 770, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31481020

ABSTRACT

BACKGROUND: We sought to assess reporting in China's Pneumonia of Unknown Etiology (PUE) passive surveillance system for emerging respiratory infections and to identify ways to improve the PUE surveillance system's detection of respiratory infections of public health significance. METHODS: From February 29-May 29, 2016, we actively identified and enrolled patients in two hospitals with acute respiratory infections (ARI) that met all PUE case criteria. We reviewed medical records for documented exposure history associated with respiratory infectious diseases, collected throat samples that were tested for seasonal and avian influenza, and interviewed clinicians regarding reasons for reporting or not reporting PUE cases. We described and analyzed the proportion of PUE cases reported and clinician awareness of and practices related to the PUE system. RESULTS: Of 2619 ARI admissions in two hospitals, 335(13%) met the PUE case definition; none were reported. Of 311 specimens tested, 18(6%) were seasonal influenza virus-positive; none were avian influenza-positive. < 10% PUE case medical records documented whether or not there were exposures to animals or others with respiratory illness. Most commonly cited reasons for not reporting cases were no awareness of the PUE system (76%) and not understanding the case definition (53%). CONCLUSIONS: Most clinicians have limited awareness of and are not reporting to the PUE system. Exposures related to respiratory infections are rarely documented in medical records. Increasing clinicians' awareness of the PUE system and including relevant exposure items in standard medical records may increase reporting.


Subject(s)
Disease Notification , Health Services Needs and Demand , Pneumonia/epidemiology , Pneumonia/etiology , Population Surveillance , Adult , China/epidemiology , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/epidemiology , Diagnosis, Differential , Disease Notification/methods , Disease Notification/standards , Female , Health Services Needs and Demand/organization & administration , Health Services Needs and Demand/standards , Hospitalization , Humans , Influenza, Human/epidemiology , Male , Mandatory Reporting , Mandatory Testing/standards , Middle Aged , Pilot Projects , Pneumonia/diagnosis , Population Surveillance/methods , Practice Patterns, Physicians'/organization & administration , Practice Patterns, Physicians'/standards , Program Evaluation , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Work Engagement
4.
Emerg Infect Dis ; 24(2)2018 02.
Article in English | MEDLINE | ID: mdl-29165238

ABSTRACT

To detect changes in human-to-human transmission of influenza A(H7N9) virus, we analyzed characteristics of 40 clusters of case-patients during 5 epidemics in China in 2013-2017. Similarities in number and size of clusters and proportion of clusters with probable human-to-human transmission across all epidemics suggest no change in human-to-human transmission risk.


Subject(s)
Epidemics , Influenza A Virus, H7N9 Subtype , Influenza, Human/epidemiology , Influenza, Human/transmission , Cluster Analysis , Humans , Influenza, Human/virology , Retrospective Studies
5.
J Infect Dis ; 216(suppl_4): S548-S554, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28934462

ABSTRACT

Multiple clusters of human infections with novel avian influenza A(H7N9) virus have occurred since the virus was first identified in spring 2013. However, in many situations it is unclear whether these clusters result from person-to-person transmission or exposure to a common infectious source. We analyzed the possibility of person-to-person transmission in each cluster and developed a framework to assess the likelihood that person-to-person transmission had occurred. We described 21 clusters with 22 infected contact cases that were identified by the Chinese Center for Disease Control and Prevention from March 2013 through June 2015. Based on detailed epidemiological information and the timing of the contact case patients' exposures to infected persons and to poultry during their potential incubation period, we graded the likelihood of person-to-person transmission as probable, possible, or unlikely. We found that person-to-person transmission probably occurred 12 times and possibly occurred 4 times; it was unlikely in 6 clusters. Probable nosocomial transmission is likely to have occurred in 2 clusters. Limited person-to-person transmission is likely to have occurred on multiple occasions since the H7N9 virus was first identified. However, these transmission events represented a small fraction of all identified cases of H7N9 human infection, and sustained person-to-person transmission was not documented.


Subject(s)
Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza, Human/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , China/epidemiology , Cluster Analysis , Cross Infection , Female , Humans , Influenza in Birds/epidemiology , Male , Middle Aged , Poultry/virology , Young Adult
6.
N Engl J Med ; 370(6): 520-32, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-23614499

ABSTRACT

BACKGROUND: The first identified cases of avian influenza A(H7N9) virus infection in humans occurred in China during February and March 2013. We analyzed data obtained from field investigations to describe the epidemiologic characteristics of H7N9 cases in China identified as of December 1, 2013. METHODS: Field investigations were conducted for each confirmed case of H7N9 virus infection. A patient was considered to have a confirmed case if the presence of the H7N9 virus was verified by means of real-time reverse-transcriptase-polymerase-chain-reaction assay (RT-PCR), viral isolation, or serologic testing. Information on demographic characteristics, exposure history, and illness timelines was obtained from patients with confirmed cases. Close contacts were monitored for 7 days for symptoms of illness. Throat swabs were obtained from contacts in whom symptoms developed and were tested for the presence of the H7N9 virus by means of real-time RT-PCR. RESULTS: Among 139 persons with confirmed H7N9 virus infection, the median age was 61 years (range, 2 to 91), 71% were male, and 73% were urban residents. Confirmed cases occurred in 12 areas of China. Nine persons were poultry workers, and of 131 persons with available data, 82% had a history of exposure to live animals, including chickens (82%). A total of 137 persons (99%) were hospitalized, 125 (90%) had pneumonia or respiratory failure, and 65 of 103 with available data (63%) were admitted to an intensive care unit. A total of 47 persons (34%) died in the hospital after a median duration of illness of 21 days, 88 were discharged from the hospital, and 2 remain hospitalized in critical condition; 2 patients were not admitted to a hospital. In four family clusters, human-to-human transmission of H7N9 virus could not be ruled out. Excluding secondary cases in clusters, 2675 close contacts of case patients completed the monitoring period; respiratory symptoms developed in 28 of them (1%); all tested negative for H7N9 virus. CONCLUSIONS: Most persons with confirmed H7N9 virus infection had severe lower respiratory tract illness, were epidemiologically unrelated, and had a history of recent exposure to poultry. However, limited, nonsustained human-to-human H7N9 virus transmission could not be ruled out in four families.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human/epidemiology , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , China/epidemiology , Family , Female , Follow-Up Studies , Humans , Influenza in Birds/transmission , Influenza, Human/transmission , Influenza, Human/virology , Male , Middle Aged , Pneumonia, Viral/virology , Poultry
7.
N Engl J Med ; 368(20): 1888-97, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23577628

ABSTRACT

BACKGROUND: Infection of poultry with influenza A subtype H7 viruses occurs worldwide, but the introduction of this subtype to humans in Asia has not been observed previously. In March 2013, three urban residents of Shanghai or Anhui, China, presented with rapidly progressing lower respiratory tract infections and were found to be infected with a novel reassortant avian-origin influenza A (H7N9) virus. METHODS: We obtained and analyzed clinical, epidemiologic, and virologic data from these patients. Respiratory specimens were tested for influenza and other respiratory viruses by means of real-time reverse-transcriptase-polymerase-chain-reaction assays, viral culturing, and sequence analyses. RESULTS: A novel reassortant avian-origin influenza A (H7N9) virus was isolated from respiratory specimens obtained from all three patients and was identified as H7N9. Sequencing analyses revealed that all the genes from these three viruses were of avian origin, with six internal genes from avian influenza A (H9N2) viruses. Substitution Q226L (H3 numbering) at the 210-loop in the hemagglutinin (HA) gene was found in the A/Anhui/1/2013 and A/Shanghai/2/2013 virus but not in the A/Shanghai/1/2013 virus. A T160A mutation was identified at the 150-loop in the HA gene of all three viruses. A deletion of five amino acids in the neuraminidase (NA) stalk region was found in all three viruses. All three patients presented with fever, cough, and dyspnea. Two of the patients had a history of recent exposure to poultry. Chest radiography revealed diffuse opacities and consolidation. Complications included acute respiratory distress syndrome and multiorgan failure. All three patients died. CONCLUSIONS: Novel reassortant H7N9 viruses were associated with severe and fatal respiratory disease in three patients. (Funded by the National Basic Research Program of China and others.).


Subject(s)
Influenza A virus/genetics , Influenza in Birds/virology , Influenza, Human/virology , Adult , Aged, 80 and over , Animals , China , Fatal Outcome , Female , Genome, Viral , Humans , Influenza A virus/classification , Influenza A virus/isolation & purification , Influenza in Birds/transmission , Male , Phylogeny , Poultry , Real-Time Polymerase Chain Reaction , Reassortant Viruses , Respiratory Distress Syndrome/etiology , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA
8.
MMWR Morb Mortal Wkly Rep ; 65(49): 1390-1394, 2016 Dec 16.
Article in English | MEDLINE | ID: mdl-27977644

ABSTRACT

Since human infections with avian influenza A(H7N9) virus were first reported by the Chinese Center for Disease Control and Prevention (China CDC) in March 2013 (1), mainland China has experienced four influenza A(H7N9) virus epidemics. Prior investigations demonstrated that age and sex distribution, clinical features, and exposure history of A(H7N9) virus human infections reported during the first three epidemics were similar (2). In this report, epidemiology and virology data from the most recent, fourth epidemic (September 2015-August 2016) were compared with those from the three earlier epidemics. Whereas age and sex distribution and exposure history in the fourth epidemic were similar to those in the first three epidemics, the fourth epidemic demonstrated a greater proportion of infected persons living in rural areas, a continued spread of the virus to new areas, and a longer epidemic period. The genetic markers of mammalian adaptation and antiviral resistance remained similar across each epidemic, and viruses from the fourth epidemic remained antigenically well matched to current candidate vaccine viruses. Although there is no evidence of increased human-to-human transmissibility of A(H7N9) viruses, the continued geographic spread, identification of novel reassortant viruses, and pandemic potential of the virus underscore the importance of rigorous A(H7N9) virus surveillance and continued risk assessment in China and neighboring countries.


Subject(s)
Epidemics/statistics & numerical data , Influenza A Virus, H7N9 Subtype , Influenza, Human/epidemiology , Influenza, Human/virology , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Animals , Child , Child, Preschool , China/epidemiology , Drug Resistance, Viral/genetics , Female , Humans , Infant , Infant, Newborn , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/isolation & purification , Male , Middle Aged , Rural Population/statistics & numerical data , Sex Distribution , Time Factors , Young Adult
9.
BMC Infect Dis ; 16(1): 734, 2016 12 05.
Article in English | MEDLINE | ID: mdl-27919225

ABSTRACT

BACKGROUND: H7N9 human cases were first detected in mainland China in March 2013. Circulation of this virus has continued each year shifting to typical winter months. We compared the clinical and epidemiologic characteristics for the first three waves of virus circulation. METHODS: The first wave was defined as reported cases with onset dates between March 31-September 30, 2013, the second wave was defined as October 1, 2013-September 30, 2014 and the third wave was defined as October 1, 2014-September 30, 2015. We used simple descriptive statistics to compare characteristics of the three distinct waves of virus circulation. RESULTS: In mainland China, 134 cases, 306 cases and 219 cases were detected and reported in first three waves, respectively. The median age of cases was statistically significantly older in the first wave (61 years vs. 56 years, 56 years, p < 0.001) compared to the following two waves. Most reported cases were among men in all three waves. There was no statistically significant difference between case fatality proportions (33, 42 and 45%, respectively, p = 0.08). There were no significant statistical differences for time from illness onset to first seeking healthcare, hospitalization, lab confirmation, initiation antiviral treatment and death between the three waves. A similar percentage of cases in all waves reported exposure to poultry or live poultry markets (87%, 88%, 90%, respectively). There was no statistically significant difference in the occurrence of severe disease between the each of the first three waves of virus circulation. Twenty-one clusters were reported during these three waves (4, 11 and 6 clusters, respectively), of which, 14 were considered to be possible human-to-human transmission. CONCLUSION: Though our case investigation for the first three waves found few differences between the epidemiologic and clinical characteristics, there is continued international concern about the pandemic potential of this virus. Since the virus continues to circulate, causes more severe disease, has the ability to mutate and become transmissible from human-to-human, and there is limited natural protection from infection in communities, it is critical that surveillance systems in China and elsewhere are alert to the influenza H7N9 virus.


Subject(s)
Influenza A Virus, H7N9 Subtype/isolation & purification , Influenza, Human/virology , Adolescent , Adult , Age Distribution , Aged , Aged, 80 and over , Child , Child, Preschool , China/epidemiology , Female , Hospitalization/statistics & numerical data , Humans , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/genetics , Influenza, Human/epidemiology , Male , Middle Aged , Pandemics , Seasons , Young Adult
10.
Clin Infect Dis ; 59(6): 787-94, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-24928293

ABSTRACT

BACKGROUND: The majority of human cases of novel avian influenza A(H7N9), which emerged in China in spring 2013, include reported exposure to poultry. However, specific host and exposure risk factors for disease are unknown, yet critical to design prevention measures. METHODS: In April-June 2013, we conducted a case-control study in 8 Chinese provinces. Patients with laboratory-confirmed A(H7N9) (n = 89) were matched by age, sex, and neighborhood to controls (n = 339). Subjects completed a questionnaire on medical history and potential exposures, including poultry markets and other poultry exposure. We used conditional logistic regression to calculate matched and adjusted odds ratios (ORs) for the association of A(H7N9) virus infection with potential risk factors. RESULTS: Fifty-five percent of patients compared with 31% of controls reported any contact with poultry (matched OR [mOR], 7.8; 95% confidence interval [CI], 3.3-18.8). Sixty-seven percent of patients compared with 35% of controls visited a live poultry market (mOR, 5.4; CI, 3.0-9.7). Visiting live poultry markets increased risk of infection even after adjusting for poultry contact and other confounders (adjusted OR, 3.4; CI, 1.8-6.7). Backyard poultry were not associated with increased risk; 14% of cases did not report any poultry exposure or market visit. Obesity (mOR, 4.7; CI, 1.8-12.4), chronic obstructive pulmonary disease (mOR, 2.7; CI, 1.1-6.9), and immunosuppressive medications (mOR, 9.0; CI, 1.7-47.2) were associated with A(H7N9) disease. CONCLUSION: Exposures to poultry in markets were associated with A(H7N9) virus infection, even without poultry contact. China should consider permanently closing live poultry markets or aggressively pursuing control measures to prevent spread of this emerging pathogen.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , China/epidemiology , Female , Health Behavior , History, 21st Century , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/immunology , Influenza, Human/history , Male , Middle Aged , Public Health Surveillance , Risk Factors , Seroepidemiologic Studies , Young Adult
11.
Emerg Infect Dis ; 20(11): 1902-5, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25340624

ABSTRACT

We report on a case of human infection with influenza A(H7N9) virus in Jilin Province in northeastern China. This case was associated with a poultry farm rather than a live bird market, which may point to a new focus for public health surveillance and interventions in this evolving outbreak.


Subject(s)
Agriculture , Influenza, Human/epidemiology , Influenza, Human/transmission , Poultry/virology , Public Health Surveillance , Animals , China/epidemiology , Disease Outbreaks , Geography, Medical , Humans , Influenza A Virus, H7N9 Subtype/classification , Influenza A Virus, H7N9 Subtype/genetics , Influenza in Birds/epidemiology , Male , Middle Aged
12.
China CDC Wkly ; 6(26): 619-623, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38966310

ABSTRACT

What is already known about this topic?: Since May 2022, a global outbreak of mpox has emerged in more than 100 non-endemic countries. As of December 2023, over 90,000 cases had been reported. The outbreak has predominantly affected men who have sex with men (MSM), with sexual contact identified as the principal mode of transmission. What is added by this report?: Since June 2023, China has faced an occurrence of mpox, predominantly affecting the MSM population. Approximately 90% of those affected reported engaging in homosexual behavior within 21 days prior to symptom onset, a trend that aligns with the global outbreak pattern. The prompt identification of cases, diligent tracing of close contacts, and the implementation of appropriate management strategies have successfully mitigated the spread of mpox virus in China. What are the implications for public health practice?: We propose that mpox is transmitted locally within China. Drawing from our experiences in controlling the virus spread, it is crucial to investigate and formulate effective surveillance and educational strategies. Importantly, we must encourage high-risk populations to promptly seek medical care upon the onset of symptoms.

13.
Emerg Infect Dis ; 19(11): 1784-90, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24206646

ABSTRACT

In mainland China, most avian influenza A(H7N9) cases in the spring of 2013 were reported through the pneumonia of unknown etiology (PUE) surveillance system. To understand the role of possible underreporting and surveillance bias in assessing the epidemiology of subtype H7N9 cases and the effect of live-poultry market closures, we examined all PUE cases reported from 2004 through May 3, 2013. Historically, the PUE system was underused, reporting was inconsistent, and PUE reporting was biased toward A(H7N9)-affected provinces, with sparse data from unaffected provinces; however, we found no evidence that the older ages of persons with A(H7N9) resulted from surveillance bias. The absolute number and the proportion of PUE cases confirmed to be A(H7N9) declined after live-poultry market closures (p<0.001), indicating that market closures might have positively affected outbreak control. In China, PUE surveillance needs to be improved.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza, Human/epidemiology , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , China/epidemiology , Disease Outbreaks , Female , Humans , Infant , Influenza, Human/transmission , Male , Middle Aged , Pneumonia/epidemiology , Pneumonia/etiology , Public Health Surveillance , Young Adult
14.
Emerg Infect Dis ; 18(5): 758-66, 2012 May.
Article in English | MEDLINE | ID: mdl-22515989

ABSTRACT

Pandemic influenza A (H1N1) 2009 virus spread rapidly around the world in 2009. We used multiple data sources from surveillance systems and specific investigations to characterize the transmission patterns of this virus in China during May-November 2009 and analyze the effectiveness of border entry screening and holiday-related school closures on transmission. In China, age distribution and transmission dynamic characteristics were similar to those in Northern Hemisphere temperate countries. The epidemic was focused in children, with an effective reproduction number of ≈1.2-1.3. The 8 days of national holidays in October reduced the effective reproduction number by 37% (95% credible interval 28%-45%) and increased underreporting by ≈20%-30%. Border entry screening detected at most 37% of international travel-related cases, with most (89%) persons identified as having fever at time of entry. These findings suggest that border entry screening was unlikely to have delayed spread in China by >4 days.


Subject(s)
Influenza, Human/epidemiology , Influenza, Human/transmission , Pandemics , China/epidemiology , Emigrants and Immigrants , Holidays , Humans , Incidence , Infectious Disease Incubation Period , Influenza A Virus, H1N1 Subtype , Influenza, Human/prevention & control , Population Surveillance , Schools , Travel
15.
Clin Infect Dis ; 52(4): 457-65, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21220768

ABSTRACT

BACKGROUND: Data on risk factors for severe outcomes from 2009 pandemic influenza A (H1N1) virus infection are limited outside of developed countries. METHODS: We reviewed medical charts to collect data from patients hospitalized with laboratory-confirmed 2009 H1N1 infection who were identified across China during the period from September 2009 through February 2010, and we analyzed potential risk factors associated with severe illness (defined as illness requiring intensive care unit admission or resulting in death). RESULTS: Among 9966 case patients, the prevalence of chronic medical conditions (33% vs 14%), pregnancy (15% vs 7%), or obesity (19% vs 14%) was significantly higher in those patients with severe illness than it was in those with less severe disease. In multivariable analyses, among nonpregnant case patients aged ≥ 2 years, having a chronic medical condition significantly increased the risk of severe outcome among all age groups, and obesity was a risk factor among those <60 years of age. The risk of severe illness among pregnant case patients was significantly higher for those in the second and third trimesters. The risk of severe illness was increased when oseltamivir treatment was initiated ≥ 5 days after illness onset (odds ratio, 1.42; 95% confidence interval, 1.20-1.67). For persons <60 years of age, the prevalence of obesity among case patients with severe illness was significantly greater than it was among those without severe illness or among the general population. CONCLUSIONS: Risk factors for severe 2009 H1N1 illness in China were similar to those observed in developed countries, but there was a lower prevalence of chronic medical conditions and a lower prevalence of obesity. Obesity was a risk factor among case patients < 60 years of age. Early initiation of oseltamivir treatment was most beneficial, and there was an increased risk of severe disease when treatment was started ≥ 5 days after illness onset.


Subject(s)
Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza, Human/mortality , Influenza, Human/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Antiviral Agents/administration & dosage , Child , Child, Preschool , China , Chronic Disease , Female , Hospitalization , Humans , Infant , Infant, Newborn , Influenza, Human/virology , Male , Middle Aged , Obesity/complications , Oseltamivir/administration & dosage , Pregnancy , Risk Factors , Young Adult
16.
Sci Rep ; 11(1): 14010, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234184

ABSTRACT

West Nile virus (WNV) was first isolated in mainland China from mosquitoes in Jiashi County, Kashgar Region, Xinjiang in 2011, following local outbreaks of viral meningitis and encephalitis caused by WNV. To elaborate the epidemiological characteristics of the WNV, surveillance of WNV infection in Kashgar Region, Xinjiang from 2013 to 2016 were carried out. Blood and CSF samples from surveillance human cases, blood of domestic chicken, cattle, sheep and mosquitoes in Kashgar Region were collected and detected. There were human 65 WNV Immunoglobulin M (IgM) antibody positive cases by ELISA screening, 6 confirmed WNV cases by the plaque reduction neutralization test (PRNT) screening. These cases occurred mainly concentrated in August to September of each year, and most of them were males. WNV-neutralizing antibodies were detected in both chickens and sheep, and the positive rates of neutralizing antibodies were 15.5% and 1.78%, respectively. A total of 15,637 mosquitoes were collected in 2013-2016, with Culex pipiens as the dominant mosquito species. Four and 1 WNV-positive mosquito pools were detected by RT-qPCR in 2013 and 2016 respectively. From these data, we can confirm that Jiashi County may be a natural epidemic foci of WNV disease, the trend highlights the routine virology surveillance in WNV surveillance cases, mosquitoes and avian should be maintained and enhanced to provide to prediction and early warning of outbreak an epidemic of WNV in China.


Subject(s)
West Nile Fever/epidemiology , West Nile Fever/virology , West Nile virus , Adolescent , Adult , Animals , Animals, Domestic/virology , Child , Child, Preschool , China/epidemiology , Culicidae/virology , Enzyme-Linked Immunosorbent Assay , Female , Geography, Medical , History, 21st Century , Humans , Male , Middle Aged , Public Health Surveillance , Seroepidemiologic Studies , West Nile Fever/diagnosis , West Nile Fever/history , Young Adult
17.
Lancet Reg Health West Pac ; 8: 100094, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33585828

ABSTRACT

BACKGROUND: China implemented containment measures to stop SARS-CoV-2 transmission in response to the COVID-19 epidemic. After the first epidemic wave, we conducted population-based serological surveys to determine extent of infection, risk factors for infection, and neutralization antibody levels to assess the real infections in the random sampled population. METHODS: We used a multistage, stratified cluster random sampling strategy to conduct serological surveys in three areas - Wuhan, Hubei Province outside Wuhan, and six provinces selected on COVID-19 incidence and containment strategy. Participants were consenting individuals >1 year old who resided in the survey area >14 days during the epidemic. Provinces screened sera for SARS-CoV-2-specific IgM, IgG, and total antibody by two lateral flow immunoassays and one magnetic chemiluminescence enzyme immunoassay; positive samples were verified by micro-neutralization assay. FINDINGS: We enrolled 34,857 participants (overall response rate, 92%); 427 were positive by micro-neutralization assay. Wuhan had the highest weighted seroprevalence (4•43%, 95% confidence interval [95%CI]=3•48%-5•62%), followed by Hubei-ex-Wuhan (0•44%, 95%CI=0•26%-0•76%), and the other provinces (<0•1%). Living in Wuhan (adjusted odds ratio aOR=13•70, 95%CI= 7•91-23•75), contact with COVID-19 patients (aOR=7•35, 95%CI=5•05-10•69), and age over 40 (aOR=1•36, 95%CI=1•07-1•72) were significantly associated with SARS-CoV-2 infection. Among seropositives, 101 (24%) reported symptoms and had higher geometric mean neutralizing antibody titers than among the 326 (76%) without symptoms (30±2•4 vs 15±2•1, p<0•001). INTERPRETATION: The low overall extent of infection and steep gradient of seropositivity from Wuhan to the outer provinces provide evidence supporting the success of containment of the first wave of COVID-19 in China. SARS-CoV-2 infection was largely asymptomatic, emphasizing the importance of active case finding and physical distancing. Virtually the entire population of China remains susceptible to SARS-CoV-2; vaccination will be needed for long-term protection. FUNDING: This study was supported by the Ministry of Science and Technology (2020YFC0846900) and the National Natural Science Foundation of China (82041026, 82041027, 82041028, 82041029, 82041030, 82041032, 82041033).

18.
BMC Infect Dis ; 10: 34, 2010 Feb 21.
Article in English | MEDLINE | ID: mdl-20170542

ABSTRACT

BACKGROUND: Studies have revealed that visiting poultry markets and direct contact with sick or dead poultry are significant risk factors for H5N1 infection, the practices of which could possibly be influenced by people's knowledge, attitudes and practices (KAPs) associated with avian influenza (AI). To determine the KAPs associated with AI among the Chinese general population, a cross-sectional survey was conducted in China. METHODS: We used standardized, structured questionnaires distributed in both an urban area (Shenzhen, Guangdong Province; n = 1,826) and a rural area (Xiuning, Anhui Province; n = 2,572) using the probability proportional to size (PPS) sampling technique. RESULTS: Approximately three-quarters of participants in both groups requested more information about AI. The preferred source of information for both groups was television. Almost three-quarters of all participants were aware of AI as an infectious disease; the urban group was more aware that it could be transmitted through poultry, that it could be prevented, and was more familiar with the relationship between AI and human infection. The villagers in Xiuning were more concerned than Shenzhen residents about human AI viral infection. Regarding preventative measures, a higher percentage of the urban group used soap for hand washing whereas the rural group preferred water only. Almost half of the participants in both groups had continued to eat poultry after being informed about the disease. CONCLUSIONS: Our study shows a high degree of awareness of human AI in both urban and rural populations, and could provide scientific support to assist the Chinese government in developing strategies and health-education campaigns to prevent AI infection among the general population.


Subject(s)
Health Knowledge, Attitudes, Practice , Influenza in Birds/epidemiology , Poultry Diseases/epidemiology , Poultry Diseases/transmission , Zoonoses/epidemiology , Zoonoses/transmission , Adolescent , Adult , Aged , Animals , Child , Child, Preschool , China/epidemiology , Cross-Sectional Studies , Female , Humans , Influenza in Birds/prevention & control , Influenza in Birds/transmission , Male , Middle Aged , Poultry , Rural Population , Surveys and Questionnaires , Urban Population , Young Adult
19.
Article in English | MEDLINE | ID: mdl-33537159

ABSTRACT

During the yellow fever epidemic in Angola in 2016, cases of yellow fever were reported in China for the first time. The 11 cases, all Chinese nationals returning from Angola, were identified in March and April 2016, one to two weeks after the peak of the Angolan epidemic. One patient died; the other 10 cases recovered after treatment. This paper reviews the epidemiological characteristics of the 11 yellow fever cases imported into China. It examines case detection and disease control and surveillance, and presents recommendations for further action to prevent additional importation of yellow fever into China.


Subject(s)
Communicable Diseases, Imported/epidemiology , Communicable Diseases, Imported/prevention & control , Epidemics , Yellow Fever/epidemiology , Yellow Fever/prevention & control , Angola/epidemiology , China/epidemiology , Humans , Travel
20.
BMC Public Health ; 8: 360, 2008 Oct 18.
Article in English | MEDLINE | ID: mdl-18928564

ABSTRACT

BACKGROUND: Human transmissible spongiform encephalopathies (HTSE), or Creutzfeldt-Jakob disease (CJD), is a group of rare and fatal diseases in central nervous system. Since outbreak of bovine spongiform encephalopathy (BSE) and variant CJD, a worldwide CJD surveillance network has been established under the proposition of WHO. In China, a national CJD surveillance system has started since 2002. The data of CJD surveillance from 2006 to 2007 was analyzed. METHODS: Total 12 provinces are included in CJD surveillance system. The surveillance unit in each province consists of one or two sentinel hospitals and the provincial CDC. All suspected CJD cases reported from CJD surveillance were diagnosed and subtyped based on the diagnostic criteria for CJD issued by WHO. RESULTS: Total 192 suspected CJD cases were reported and 5 genetic CJD, 51 probable and 30 possible sporadic CJD (sCJD) cases were diagnosed. The collected sCJD cases distribute sporadically without geographical clustering and seasonal relativity and the highest incidences in both probable and possible sCJD cases appeared in the group of 60-69 year. The most common three foremost symptoms were progressive dementia, cerebellum and mental-related symptoms. The probable sCJD patients owning both typical EEG alteration and CSF protein 14-3-3 positive have more characteristic clinical syndromes than the ones having only one positive. The polymorphisms of codon 129 of all tested reported cases shows typical patterns of Han Chinese as previous reports, that M129M are predominant whereas M129V are seldom. CONCLUSION: Chinese CJD patients possessed similar epidemiological and clinical characteristics as worldwide.


Subject(s)
Creutzfeldt-Jakob Syndrome/epidemiology , Population Surveillance , Adult , Aged , Aged, 80 and over , China/epidemiology , Creutzfeldt-Jakob Syndrome/diagnosis , Creutzfeldt-Jakob Syndrome/physiopathology , Female , Hospitals , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL