Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Chaos ; 32(10): 101105, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36319308

ABSTRACT

In this paper, we investigate the averaging principle for Caputo-type fractional stochastic differential equations driven by Brownian motion. Different from the approach of integration by parts or decomposing integral interval to deal with the estimation of integral involving singular kernel in the existing literature, we show the desired averaging principle in the sense of mean square by using Hölder inequality via growth conditions on the nonlinear stochastic term. Finally, a simulation example is given to verify the theoretical results.

2.
BMC Microbiol ; 20(1): 58, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32160875

ABSTRACT

BACKGROUND: The potato tuber moth (PTM), Phthorimaea operculella (Zeller), is a worldwide pest that feeds on both the leaves and tubers of potato plants. PTM larvae can digest leaves, or tubers, resulting in serious damage to potato plants in the field and potato tubers in storage. To understand how midgut bacterial diversity is influenced by the consumption of these two tissue types, the symbiotic bacteria in the potato-feeding PTM midgut and the endophytic bacteria of potato tissues were analyzed. RESULTS: At the genus level, the bacterial community composition in the PTM midgut was influenced by the tissues consumed, owing to their different nutrient contents. Escherichia_Shigella and Enterobacter were the most dominant genera in the midgut of leaf-feeding and tuber-feeding PTMs, respectively. Interestingly, even though only present in low abundance in leaves and tubers, Escherichia_Shigella were dominantly distributed only in the midgut of leaf-feeding PTMs, indicating that specific accumulation of these genera have occurred by feeding on leaves. Moreover, Enterobacter, the most dominant genus in the midgut of tuber-feeding PTMs, was undetectable in all potato tissues, indicating it is gut-specific origin and tuber feeding-specific accumulation. Both Escherichia_Shigella and Enterobacter abundances were positively correlated with the dominant contents of potato leaves and tubers, respectively. CONCLUSIONS: Enrichment of specific PTM midgut bacterial communities was related to different nutrient levels in different tissues consumed by the insect, which in turn influenced host utilization. We provide evidence that a portion of the intestinal microbes of PTMs may be derived from potato endophytic bacteria and improve the understanding of the relationship between potato endophytic bacteria and the gut microbiota of PTMs, which may offer support for integrated management of this worldwide pest.


Subject(s)
Bacteria/classification , Moths/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA/methods , Solanum tuberosum/microbiology , Animals , Bacteria/genetics , Bacteria/isolation & purification , Digestive System/microbiology , Herbivory , Moths/physiology , Organ Specificity , Phylogeny , Plant Leaves/microbiology , Plant Leaves/parasitology , Plant Tubers/microbiology , Plant Tubers/parasitology , Solanum tuberosum/parasitology
3.
ISA Trans ; 137: 369-378, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36623994

ABSTRACT

In this paper, we study the adaptive fixed-time consensus control for stochastic multi-agent systems (SMASs) with uncertain actuator faults. Firstly, a fully distributed adaptive consensus protocol and an adaptive fault-tolerant consensus protocol are proposed, respectively, to ensure that the fixed-time consensus of SMASs with actuator faults can be reached. Secondly, an adaptive fault-tolerant containment consensus protocol is further proposed for the SMASs by leveraging the signum function, and this protocol can effectively solve the containment consensus in the unbalanced communication network. Finally, some simulation examples are given to verify the effectiveness of our consensus protocols.

4.
Plants (Basel) ; 12(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37687339

ABSTRACT

The potato tuber moth (PTM), Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae), is one of the most destructive pests of potato crops worldwide. Although it has been reported how potatoes integrate the early responses to various PTM herbivory stimuli by accumulatively adding the components, the broad-scale defense signaling network of potato to single stimuli at multiple time points are unclear. Therefore, we compared three potato transcriptional profiles of undamaged plants, mechanically damaged plants and PTM-feeding plants at 3 h, 48 h, and 96 h, and further analyzed the gene expression patterns of a multitude of insect resistance-related signaling pathways, including phytohormones, reactive oxygen species, secondary metabolites, transcription factors, MAPK cascades, plant-pathogen interactions, protease inhibitors, chitinase, and lectins, etc. in the potato under mechanical damage and PTM infestation. Our results suggested that the potato transcriptome showed significant responses to mechanical damage and potato tuber moth infestation, respectively. The potato transcriptome responses modulated over time and were higher at 96 than at 48 h, so transcriptional changes in later stages of PTM infestation may underlie the potato recovery response. Although the transcriptional profiles of mechanically damaged and PTM-infested plants overlap extensively in multiple signaling pathways, some genes are uniquely induced or repressed. True herbivore feeding induced more and stronger gene expression compared to mechanical damage. In addition, we identified 2976, 1499, and 117 genes that only appeared in M-vs-P comparison groups by comparing the transcriptomes of PTM-damaged and mechanically damaged potatoes at 3 h, 48 h, and 96 h, respectively, and these genes deserve further study in the future. This transcriptomic dataset further enhances the understanding of the interactions between potato and potato tuber moth, enriches the molecular resources in this research area and paves the way for breeding insect-resistant potatoes.

5.
Microorganisms ; 11(10)2023 Oct 08.
Article in English | MEDLINE | ID: mdl-37894172

ABSTRACT

Spodoptera frugiperda (J.E.Smith) (Lepidoptera: Noctuidae) was first found in 2019 in Yunnan, China, and it was characterized as a corn strain; it was also found on rice strains there, and it damages rice in China, but little is known about the effect of host plant transfer on the intestinal microbiota and the activities of detoxification enzymes in the C-strain (corn strain) S. frugiperda. The intestinal microbiota and the protective enzyme activity of S. frugiperda that were transferred from rice plants were assessed, and the fourth generation of insects transferred from corn were studied; the gene types of S. frugiperda that were transferred from rice plants were tested using mitochondrial Tpi gene sequences. The results showed that the intestinal microbiota in the C-strain S. frugiperda were changed after the host transference, and the diversity and richness of the intestinal bacterial communities of the S. frugiperda feeding on rice were significantly reduced after the transfer of the host from corn. The predominant species of intestinal bacteria of the S. frugiperda on rice transferred from corn were Enterococcus and Enterobacter, with relative abundances of 28.7% and 66.68%; the predominant species of intestinal bacteria of the S. frugiperda that were transferred from rice and feeding on corn were Enterococcus (22.35%) and Erysipelatoclostridium (73.92%); and the predominant species of intestinal bacteria of S. frugiperda feeding on corn was Enterococcus, with a relative abundance of 61.26%. The CAT (catalase) activity of the S. frugiperda transferred from corn onto rice from corn was reduced, the POD (peroxidase) activity was significantly increased after the transfer from corn, and no significant variations were found for the SOD (superoxide dismutase), CarE (carboxylesterase), and GST (glutathione S-transferase) activities of S. frugiperda after the host plant transfer. The results showed that after feeding on rice, the activities of CAT and POD in the in S. frugiperda body changed in order to resist plant secondary metabolites from corn or rice, but there was no significant change in the detoxification enzymes in the body. In summary, switching the host plant between corn and rice induced variations in the intestinal microbiota in C-strain S. frugiperda owing to the strain difference between the C-strain and the R-strain (rice strain), and this was consistent with the results of the activities of detoxification enzymes. The results indicat that changes in intestinal microbiota and physiological enzymes may be important reasons for the adaptive capacity of C-strain S. frugiperda to rice.

6.
Pest Manag Sci ; 78(9): 3920-3930, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35484875

ABSTRACT

BACKGROUND: The potato tuber moth (PTM), Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), is a destructive pest of Solanaceae crops worldwide. α-solanine and α-chaconine are toxic steroidal glycoalkaloids (SGAs) in Solanaceae crops and are most abundant in potatoes (Solanum tuberosum L.), accounting for more than 95% of the total SGAs. PTM grows on potatoes with a higher concentration of SGAs. Gut bacteria play an important role in the physiology and behavior of insects. To understand the role of gut bacteria of PTM in host adaptability, we isolated and identified major SGA (α-chaconine and α-solanine)-degrading gut bacteria in the gut of PTM by a selective medium and analyzed their degradability and degradation mechanism. RESULTS: The gut Glutamicibacter halophytocola S2 of PTM with high degradation capacity to α-solanine and α-chaconine were detected by liquid chromatography mass spectrometry (LC-MS) and identified by morphological and 16S rRNA gene sequence analysis. A gene cluster involving α-rhamnosidases, ß-glucosidases, and ß-galactosidases was identified by whole-genome sequencing of G. halophytocola S2. These genes had higher expression on the α-solanine medium. PTM inoculated with the isolated G. halophytocola S2 obtained higher fitness than antibiotic-treated PTM. CONCLUSION: The G. halophytocola S2 in the gut of PTM could degrade the major toxic α-solanine and α-chaconine in potatoes. This enhances the fitness of PTM feeding on potatoes with high SGA contents. The results provide a theoretical foundation for the integrated pest management of PTM and provide an effective strain for the treatment of α-solanine and α-chaconine in potato food. © 2022 Society of Chemical Industry.


Subject(s)
Micrococcaceae , Moths , Solanum tuberosum , Animals , Bacteria , Crops, Agricultural/genetics , Micrococcaceae/genetics , Moths/genetics , RNA, Ribosomal, 16S , Solanum tuberosum/chemistry , Vegetables
7.
Environ Entomol ; 51(5): 940-947, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36066442

ABSTRACT

The tomato leafminer Tuta absoluta (Meyrick) is one of the most harmful pests of solanaceous crops. Its larval morphological characteristics are similar, making the distinguishing between different larval instars difficult. Accurate identification of T. absoluta instars is necessary either for population outbreak forecasting, or developing successful control programs. Although a clustering algorithm can be used to determine the number of larval instars, little is known regarding the use of density-based ordering points to identify the clustering structure (OPTICS) and determine the number of larvae. In this study, larval instars of 240 T. absoluta individuals were determined by the density-based OPTICS clustering method, based on mandible width, and head capsule width and length. To verify the feasibility of the OPTICS clustering method, we compared it with the density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm, Gaussian mixture models, and k-means. Additionally, the instars determined by the clustering methods were verified using the Brooks-Dyar rule, Crosby rule, and linear regression model. The instars determined by the OPTICS clustering method were equal to those determined by the other types of clustering algorithms, and the instar results were consistent with the Brooks-Dyar rule, Crosby rule, frequency analysis, and logarithmic regression model. These results indicated that the OPTICS clustering method is robust for determining insect larva instar phase. Moreover, it was found that three morphological indices of T. absoluta can be used for determining instars of this pest in the field, which may provide important information for the management of T. absoluta populations.


Subject(s)
Algorithms , Entomology , Moths , Animals , Cluster Analysis , Larva , Solanum lycopersicum , Entomology/methods
8.
Front Microbiol ; 13: 1023698, 2022.
Article in English | MEDLINE | ID: mdl-36312939

ABSTRACT

Steroidal glycoalkaloids (SGAs) are secondary metabolites commonly found in members of the family Solanaceae, including potatoes, and are toxic to pests and humans. The predominant SGAs in potato are α-chaconine and α-solanine. We previously reported that Glutamicibacter halophytocola S2, a gut bacterium of the pest Phthorimaea operculella (potato tuber moth), can degrade α-chaconine and α-solanine in potatoes, which can improve the fitness of P. operculella to feed on potatoes with a high content of toxic SGAs. Glutamicibacter halophytocola S2 harbored a gene cluster containing three deglycosylase genes-GE000599, GE000600, and GE000601-that were predicted encode α-rhamnosidase (RhaA), ß-glucosidase (GluA), and ß-galactosidase (GalA). However, there is limited information is available on the enzyme activities of the three enzymes expressed by this gene cluster and how they degrade the major toxic α-chaconine and α-solanine. In the current study, each enzyme of this gene cluster was produced by a prokaryotic expression approach and the activity of the recombinant enzymes for their target substrate and α-chaconine and α-solanine were evaluated by EPOCH microplate spectrophotometer and liquid chromatography mass spectrometry (LC-MS). The three enzymes had multifunctional activities, with RhaA and GluA could hydrolyze α-rhamnose, ß-glucose, and ß-galactose, while GalA can hydrolyze ß-glucose and ß-galactose. The degradation of α-chaconine and α-solanine was consistent with the results of the enzyme activity assays. The final product solanidine could be generated by adding RhaA or GluA alone. In conclusion, this study characterized the multifunctional activity and specific degradation pathway of these three enzymes in G. halophytocola S2. The three multifunctional enzymes have high glycosidic hydrolysis activity and clear gene sequence information, which help facilitates understanding the detoxification mechanism of insect gut microbes. The enzymes have a broad application potential and may be valuable in the removal of toxic SGAs from for potato food consumption.

9.
Front Chem ; 9: 775226, 2021.
Article in English | MEDLINE | ID: mdl-34976949

ABSTRACT

Clinically, the prognosis of tumor therapy is fundamentally affected by multidrug resistance (MDR), which is primarily a result of enhanced drug efflux mediated by channels in the membrane that reduce drug accumulation in tumor cells. How to restore the sensitivity of tumor cells to chemotherapy is an ongoing and pressing clinical issue. There is a prevailing view that tumor cells turn to glycolysis for energy supply due to hypoxia. However, studies have shown that mitochondria also play crucial roles, such as providing intermediates for biosynthesis through the tricarboxylic acid (TCA) cycle and a plenty of ATP to fuel cells through the complete breakdown of organic matter by oxidative phosphorylation (OXPHOS). High OXPHOS have been found in some tumors, particularly in cancer stem cells (CSCs), which possess increased mitochondria mass and may be depends on OXPHOS for energy supply. Therefore, they are sensitive to inhibitors of mitochondrial metabolism. In view of this, we should consider mitochondrial metabolism when developing drugs to overcome MDR, where mitochondrial RNA polymerase (POLRMT) would be the focus, as it is responsible for mitochondrial gene expression. Inhibition of POLRMT could disrupt mitochondrial metabolism at its source, causing an energy crisis and ultimately eradicating tumor cells. In addition, it may restore the energy supply of MDR cells to glycolysis and re-sensitize them to conventional chemotherapy. Furthermore, we discuss the rationale and strategies for designing new therapeutic molecules for MDR cancers by targeting POLRMT.

10.
Insects ; 11(2)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32024074

ABSTRACT

Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is a highly invasive pest which is harmful to many cash crops globally and resistant to various insecticides. Entomopathogenic fungi (EPF), as biological control agents, have demonstrated a good control effect on WFT. The aim of this study was to evaluate the synergistic and pathogenicity efficacy of the fungal strain Metarhizium flavoviride WSWL51721 when distributed with diatomaceous earth (DE) and the active ingredient imidacloprid using four bioassay methods against adult and second instar larvae of WFT. The data of the four bioassays have been fitted to the time-concentration-mortality (TCM) model. The corrected mortality ranges of WFT adults were 75-100%, 82.69-100%, 78.85-100%, and 92.31-100%, and the corrected mortality ranges of WFT second instar larvae were 72.22-100%, 85.19-100%, 77.77-100%, and 100% in the four bioassays at concentrations of 1.2 × 106 to 1.2 × 108 conidia/mL, respectively. At 1.2 × 108 conidia/mL, assays 2 (M. flavoviride with DE), 3 (M. flavoviride with imidacloprid), and 4 (M. flavoviride with DE and imidacloprid) had the shortest median lethal time (LT50), compared with that of assay 1 (M. flavoviride alone) for adults at 2.26 d, 2.06 d, and 1.53 d, and second instar larvae at 2.45 d, 1.70 d, and 1.41 d, respectively. The median lethal concentration (LC50) in the four bioassays decreased within 3-10 days of inoculation. On the third day, it was found that the lowest median lethal concentrations in assays 2, 3, and 4 were 1.58 × 107, 1.13 × 107, and 3.39 × 106 conidia/mL, respectively, which were significantly different from that in assay 1 for the adults. For the second instar larvae, assays 2, 3, and 4 also had the lowest lethal concentrations and were significantly different from those of assay 1. There were significant differences in sporulation between adults and second instar larvae under the four bioassays. Our results indicate that assays 2 (M. flavoviride with DE), 3 (M. flavoviride with imidacloprid), and 4 (M. flavoviride with DE and imidacloprid) demonstrate synergistic effects on the control of both adult and second instar larvae of WFT under laboratory conditions.

SELECTION OF CITATIONS
SEARCH DETAIL