ABSTRACT
To test a Chinese character version of the phonemic verbal fluency task in patients with temporal lobe epilepsy (TLE) and assess the verbal fluency deficiency pattern in TLE with and without hippocampal sclerosis, a cross-sectional study was conducted including 30 patients with TLE and hippocampal sclerosis (TLE-HS), 28 patients with TLE and without hippocampal sclerosis (TLE-NHS), and 29 demographically matched healthy controls (HC). Both sexes were enrolled. Participants finished a Chinese character verbal fluency (VFC) task during functional MRI. The activation/deactivation maps, functional connectivity, degree centrality, and community features of the left frontal and temporal regions were compared. A neural network classification model was applied to differentiate TLE-HS and TLE-NHS using functional statistics. The VFC scores were correlated with semantic fluency in HC while correlated with phonemic fluency in TLE-NHS. Activation and deactivation deficiency was observed in TLE-HS and TLE-NHS (p < 0.001, k ≥ 10). Functional connectivity, degree centrality, and community features of anterior inferior temporal gyri were impaired in TLE-HS and retained or even enhanced in TLE-NHS (p < 0.05, FDR-corrected). The functional connectivity was correlated with phonemic fluency (p < 0.05, FDR-corrected). The neural network classification reached an area under the curve of 0.90 in diagnosing hippocampal sclerosis. The VFC task is a Chinese phonemic verbal fluency task suitable for clinical application in TLE. During the VFC task, functional connectivity of phonemic circuits was impaired in TLE-HS and was enhanced in TLE-NHS, representing a compensative phonemic searching strategy applied by patients with TLE-NHS.
Subject(s)
Epilepsy, Temporal Lobe , Hippocampus , Magnetic Resonance Imaging , Sclerosis , Humans , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/complications , Male , Female , Adult , Hippocampus/pathology , Hippocampus/physiopathology , Hippocampus/diagnostic imaging , Cross-Sectional Studies , Young Adult , Middle Aged , Hippocampal SclerosisABSTRACT
BACKGROUND: Transbronchial cryoablation shows potential as a local therapy for inoperable peripheral lung cancer. However, its clinical application for peripheral pulmonary lesions has not been reported yet. METHODS: An improved cryoprobe with an 8-mm-long, 1.9-mm-wide cryotip was used. Initially, the safety and effectiveness of this cryoprobe were assessed in an in vivo porcine model. Transbronchial cryoablation with 2 or 3 freeze-thaw cycles (10 min or 15 min in each freezing time) was performed in 18 pigs under CT monitoring. Radiological and pathological examinations were performed to evaluate the extent of cryoablation. Subsequently, nine patients with stage IA peripheral lung cancer or metastases underwent transbronchial cryoablation with this cryoprobe under the guidance of navigation bronchoscopy and cone-beam CT. Technical success, safety and outcomes were assessed. RESULTS: 36 cryoablation procedures were performed successfully without any major complications in the porcine model. The extent of cryoablation increased with freezing time and the number of freeze-thaw cycles, which peaked at 24 hours and then gradually decreased. Pathological results showed a change from massive haemorrhage at 24 hours to fibrous hyperplasia with chronic inflammation after 4 weeks. In the clinical trial, 10 cryoablations were performed on 9 tumours with a technical success rate of 100%. One mild treatment-related complication occurred. Of the nine tumours, seven achieved complete ablation, while two exhibited incomplete ablation and subsequent local progression at 6 months. CONCLUSION: Our initial experience indicated that transbronchial cryoablation was a safe and feasible procedure for non-surgical peripheral stage IA lung cancer or pulmonary metastases. TRIAL REGISTRATION NUMBER: ChiCTR2200061544.
Subject(s)
Bronchoscopy , Cryosurgery , Lung Neoplasms , Cryosurgery/methods , Cryosurgery/instrumentation , Animals , Lung Neoplasms/surgery , Lung Neoplasms/pathology , Swine , Humans , Bronchoscopy/methods , Male , Female , Aged , Middle Aged , Treatment Outcome , Cone-Beam Computed TomographyABSTRACT
OBJECTIVE: Structural-functional coupling (SFC) has shown great promise in predicting postsurgical seizure recurrence in patients with temporal lobe epilepsy (TLE). In this study, we aimed to clarify the global alterations in SFC in TLE patients and predict their surgical outcomes using SFC features. METHODS: This study analyzed presurgical diffusion and functional magnetic resonance imaging data from 71 TLE patients and 48 healthy controls (HCs). TLE patients were categorized into seizure-free (SF) and non-seizure-free (nSF) groups based on postsurgical recurrence. Individual functional connectivity (FC), structural connectivity (SC), and SFC were quantified at the regional and modular levels. The data were compared between the TLE and HC groups as well as among the TLE, SF, and nSF groups. The features of SFC, SC, and FC were categorized into three datasets: the modular SFC dataset, regional SFC dataset, and SC/FC dataset. Each dataset was independently integrated into a cross-validated machine learning model to classify surgical outcomes. RESULTS: Compared with HCs, the visual and subcortical modules exhibited decoupling in TLE patients (p < .05). Multiple default mode network (DMN)-related SFCs were significantly higher in the nSF group than in the SF group (p < .05). Models trained using the modular SFC dataset demonstrated the highest predictive performance. The final prediction model achieved an area under the receiver operating characteristic curve of .893 with an overall accuracy of .887. SIGNIFICANCE: Presurgical hyper-SFC in the DMN was strongly associated with postoperative seizure recurrence. Furthermore, our results introduce a novel SFC-based machine learning model to precisely classify the surgical outcomes of TLE.
Subject(s)
Epilepsy, Temporal Lobe , Humans , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Default Mode Network , Nerve Net , Seizures/diagnostic imaging , Seizures/surgery , Magnetic Resonance Imaging/methods , Treatment OutcomeABSTRACT
The CONSTANS/CONSTANS-Like (CO/COL) family has been shown to play important roles in flowering, stress tolerance, fruit development and ripening in higher plants. In this study, three COL genes, MiCOL6, MiCOL7A and MiCOL7B, which each contain only one CCT domain, were isolated from mango (Mangifera indica), and their functions were investigated. MiCOL7A and MiCOL7B were expressed mainly at 20 days after flowering (DAF), and all three genes were highly expressed during the flowering induction period. The expression levels of the three genes were affected by light conditions, but only MiCOL6 exhibited a clear circadian rhythm. Overexpression of MiCOL6 promoted earlier flowering, while overexpression of MiCOL7A or MiCOL7B delayed flowering compared to that in the control lines of Arabidopsis thaliana under long-day (LD) and short-day (SD) conditions. Overexpressing MiCOL6, MiCOL7A or MiCOL7B in transgenic plants increased superoxide dismutase (SOD) and proline levels, decreased malondialdehyde (MAD) levels, and improved survival under drought and salt stress. In addition, yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) analyses showed that the MiCOL6, MiCOL7A and MiCOL7B proteins interact with several stress- and flower-related proteins. This work demonstrates the functions of MiCOL6, MiCOL7A and MiCOL7B and provides a foundation for further research on the role of mango COL genes in flowering regulation and the abiotic stress response.
Subject(s)
Arabidopsis , Mangifera , Mangifera/genetics , Arabidopsis/genetics , Circadian Rhythm , Droughts , Flowers/genetics , Saccharomyces cerevisiaeABSTRACT
OBJECTIVE: In this study, the diffusion tensor imaging along perivascular space analysis (DTI-ALPS) technique was utilized to evaluate the functional changes in the glymphatic system of the bilateral hemispheres in patients with unilateral temporal lobe epilepsy (TLE) accompanied by hippocampal sclerosis (HS). The aim was to gain insights into the alterations in the glymphatic system function in TLE patients. METHODS: A total of 61 unilateral TLE patients with HS and 53 healthy controls (HCs) from the Department of Neurosurgery at Xiangya Hospital were included in the study. All subjects underwent DTI using the same 3 T MR Scanner, and the DTI-ALPS index was calculated. Differences in the DTI-ALPS index between TLE patients and HCs were evaluated, along with the correlation between the DTI-ALPS index of TLE and clinical features of epilepsy. These features included age, age of onset, seizure duration, and neuropsychological scores. RESULTS: Compared to the bilateral means of the HCs, both the ipsilateral and contralateral DTI-ALPS index of the TLE patients were significantly decreased (TLE ipsilateral 1.41 ± 0.172 vs. HC bilateral mean: 1.49 ± 0.116, p = 0.006; TLE contralateral: 1.42 ± 0.158 vs. HC bilateral mean: 1.49 ± 0.116, p = 0.015). The ipsilateral DTI-ALPS index in TLE patients showed a significant negative correlation with disease duration (r = -0.352, p = 0.005). CONCLUSIONS: The present study suggests the presence of bilateral dysfunctions in the glymphatic system and also highlight a laterality feature in these dysfunctions. Additionally, the study found a significant negative correlation between the ipsilateral DTI-ALPS index and disease duration, underscoring the significance of early effective interventions and indicating potential for the development of innovative treatments targeting the glymphatic system.
Subject(s)
Diffusion Tensor Imaging , Epilepsy, Temporal Lobe , Functional Laterality , Glymphatic System , Hippocampal Sclerosis , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/physiopathology , Functional Laterality/physiology , Glymphatic System/diagnostic imaging , Glymphatic System/pathology , Glymphatic System/physiopathology , Hippocampal Sclerosis/diagnostic imaging , Hippocampal Sclerosis/pathology , Neuropsychological TestsABSTRACT
INTRODUCTION: Cryobiopsy (CB) using a 1.1-mm cryoprobe under fluoroscopic guidance is feasible and safe for diagnosis of ground glass opacity (GGO) lesions. However, the efficacy of CB combined with cone-beam CT (CBCT) for GGO-predominant pulmonary nodules remains elusive. METHODS: We retrospectively studied patients who underwent CB combined with conventional biopsy under CBCT guidance for GGO-predominant pulmonary nodules with a consolidation-to-tumour ratio <50.0%. RESULTS: A total of 32 patients with GGO-predominant pulmonary nodules were enrolled: 17 pure GGOs and 15 mixed GGOs. The mean lesion diameter was 15.81 ± 5.52 mm and the overall diagnostic yield was 71.9%. Seven lesions were diagnosed by CB alone, which increased the diagnostic outcomes by 21.9%. Diagnostic yields for CB, forceps biopsy (FB), brushing, and guide sheath flushing were 65.6%, 46.9%, 15.6%, and 14.3%, respectively. Univariate analysis revealed that positive computed tomography (CT) bronchus sign (p = 0.035), positive CBCT sign (p < 0.01), and CB-first biopsy sequence (p = 0.036) were significant predictive factors for higher diagnostic yield. Specimens obtained by CB had larger mean sample size (p < 0.01), lower blood cell area (p < 0.01), and fewer crush artefacts (p < 0.01) than specimens from FB. No severe bleeding or other complications occurred. CONCLUSION: CB using a 1.1-mm cryoprobe under CBCT guidance increased diagnostic yield for GGO-predominant pulmonary nodules based on conventional biopsy. Further, it provided larger and nearly intact samples compared with forceps.
Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Retrospective Studies , Biopsy/methods , Cone-Beam Computed Tomography , Multiple Pulmonary Nodules/diagnostic imagingABSTRACT
BACKGROUND: Lung tumors are prevalent malignancies associated with a high mortality rate, imposing significant medical and societal burdens. Although immunotherapy shows promise in improving survival, response rates are relatively modest. Thermal ablation can not only eliminate tumor cells directly but also enhance antitumor immunity response, thus manifesting a remarkable propensity to synergize with immunotherapy. SUMMARY: In this review, we provided a brief overview of the application of thermal ablation in peripheral lung tumors. We summarized the patient selection of thermal ablation. We highlighted the potential of thermal ablation to augment the antitumor immune response, offering a promising avenue for combined therapies. We summarized studies assessing the synergistic effects of thermal ablation and immunotherapy in preclinical and clinical settings. Lastly, we underscored the urgent issues that warrant in-depth exploration when applying thermal ablation and immunotherapy to lung tumor patients. KEY MESSAGES: This review emphasized the prospects of using thermal ablation combined with immunotherapy in patients with peripheral lung tumors. However, further research is needed to enhance and optimize this treatment strategy.
Subject(s)
Immunotherapy , Lung Neoplasms , Humans , Lung Neoplasms/therapy , Lung Neoplasms/immunology , Immunotherapy/methods , Combined Modality Therapy , Ablation Techniques/methodsABSTRACT
BACKGROUND: Traditional electromagnetic navigation bronchoscopy (ENB) is a real-time image-guided system and used with thick bronchoscopes for the diagnosis of peripheral pulmonary nodules (PPNs). A novel ENB that could be used with thin bronchoscopes was developed. This study aimed to evaluate the diagnostic yield and the experience of using this ENB system in a real clinical scenario. METHODS: This multicentre study enrolled consecutive patients with PPNs adopting ENB from March 2019 to August 2021. ENB was performed with different bronchoscopes, ancillary techniques and sampling instruments according to the characteristics of the nodule and the judgement of the operator. The primary endpoint was the diagnostic yield. The secondary endpoints included the diagnostic yield of subgroups, procedural details and complication rate. RESULTS: In total, 479 patients with 479 nodules were enrolled in this study. The median lesion size was 20.9 (IQR, 15.9-25.9) mm. The overall diagnostic yield was 74.9% (359/479). A thin bronchoscope was used in 96.2% (461/479) nodules. ENB in combination with radial endobronchial ultrasound (rEBUS), a guide sheath (GS) and a thin bronchoscope was the most widely used guided method, producing a diagnostic yield of 74.1% (254/343). The median total procedural time was 1325.0 (IQR, 1014.0-1676.0) s. No severe complications occurred. CONCLUSION: This novel ENB system can be used in combination with different bronchoscopes, ancillary techniques and sampling instruments with a high diagnostic yield and safety profile for the diagnosis of PPNs, of which the combination of thin bronchoscope, rEBUS and GS was the most common method in clinical practice. TRIAL REGISTRATION NUMBER: NCT03716284.
Subject(s)
Lung Neoplasms , Solitary Pulmonary Nodule , Humans , Bronchoscopy/adverse effects , Bronchoscopy/methods , Solitary Pulmonary Nodule/diagnosis , Solitary Pulmonary Nodule/pathology , Prospective Studies , Electromagnetic Phenomena , Lung Neoplasms/pathologyABSTRACT
BACKGROUND: Multiple MYB transcription factors (TFs) are involved in the regulation of plant coloring. Betalain is a kind of natural plant pigment and its biosynthesis is regulated by a number of enzymes. Despite this, little is known about the molecular properties and roles of MYB TFs in pitaya betalain biosynthesis. RESULTS: In the present study, we identified a 1R-MYB gene, HuMYB132, which is preferentially expressed in red-pulp pitaya at the mature stage. It was clustered with Arabidopsis R-R-type genes and had two DNA-binding domains and a histidine-rich region. The expression assays in N. benthamiana and yeast indicated that HuMYB132 is a nucleus-localized protein with transcriptional activation activity. Dual luciferase reporter assay and electrophoretic mobility shift assays (EMSA) demonstrated that HuMYB132 could promote the transcriptional activities of HuADH1, HuCYP76AD1-1, and HuDODA1 by binding to their promoters. Silencing HuMYB132 reduced betalain accumulation and the expression levels of betalain biosynthetic genes in pitaya pulps. CONCLUSIONS: According to our findings, HuMYB132, a R-R type member of 1R-MYB TF subfamily, positively regulates pitaya betalain biosynthesis by regulating the expression of HuADH1, HuCYP76AD1-1, and HuDODA1. The present study provides a new theoretical reference for the management of pitaya betalain biosynthesis and also provides an essential basis for future regulation of betalain biosynthesis in Hylocereus.
Subject(s)
Arabidopsis , Betalains , Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , Arabidopsis/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolismABSTRACT
MAIN CONCLUSION: Three Di19-4 genes were identified in mango. Overexpression of MiDi19-4B in A. thaliana promoted earlier flowering and enhanced drought, salt, and ABA resistance. Drought-induced protein 19 (Di19) is a drought-induced protein that is mainly involved in multiple stress responses. Here, three Di19-4 genes (MiDi19-4A/B/C) in mango (Mangifera indica L.) were identified, and the coding sequences (CDS) had lengths of 684, 666, and 672 bp and encoded proteins with 228, 222, and 224 amino acids, respectively. The promoters of the MiDi19-4 genes contained phytohormone-, light-, and abiotic stress-responsive elements. The MiDi19-4 genes were expressed in every tissue and highly expressed in leaves. Moreover, MiDi19-4 genes were highly correlated with the vegetative growth period and induced by polyethylene glycol (PEG) or salt stress. MiDi19-4B displayed the highest expression during the vegetative growth period and then showed decreased expression, and MiDi19-4B was highly expressed at both the late stage of the vegetative growth period and the initial stage of the flowering induction period. The 35S::GFP-MiDi19-4B fusion protein was located in the cell nucleus. The transgenic plants ectopically expressing MiDi19-4B exhibited earlier flowering and increased expression patterns of FRUITFULL (AtFUL), APETALA1 (AtAP1), and FLOWERING LOCUS T (AtFT). The drought and salt tolerance of MiDi19-4B transgenic plants was significantly increased, and these plants showed decreased sensitivity to abscisic acid (ABA) and considerably increased expression levels of drought- and salt-related genes and ABA signalling pathway genes. Additionally, bimolecular fluorescence complementation (BiFC) experiments revealed that the MiDi19-4B protein interacted with CAULIFLOWER (MiCAL1), MiCAL2, MiAP1-1, and MiAP1-2. Taken together, these results highlighted the important regulatory roles of MiDi19-4B in tolerance to multiple abiotic stresses and in flowering.
Subject(s)
Arabidopsis , Mangifera , Abscisic Acid/metabolism , Arabidopsis/genetics , Ectopic Gene Expression , Exons , Mangifera/genetics , Plants, Genetically Modified/geneticsABSTRACT
BACKGROUND: Differential diagnosis of brain metastases subtype and primary central nervous system lymphoma (PCNSL) is necessary for treatment decisions. The application of machine learning facilitates the classification of brain tumors, but prior investigations into primary lymphoma and brain metastases subtype classification have been limited. PURPOSE: To develop a machine-learning model to classify PCNSL, brain metastases with primary lung and non-lung origin. STUDY TYPE: Retrospective. POPULATION: A total of 211 subjects with pathologically confirmed PCNSL or brain metastases (training cohort 168 and testing cohort 43). FIELD STRENGTH/SEQUENCE: A 3.0 T axial contrast-enhanced T1-weighted spin-echo inversion recovery sequence (T1WI-CE), axial T2-weighted fluid-attenuation inversion recovery sequence (T2FLAIR) ASSESSMENT: Several machine-learning models (support vector machine, random forest, and K-nearest neighbors) were built with least absolute shrinkage and selection operator (LASSO) using features from T1WI-CE, T2FLAIR, and clinical. The model with the highest performance in the training cohort was selected to differentiate lesions in the testing cohort. Then, three radiologists conducted a two-round classification (with and without model reference) using images and clinical information from testing cohorts. STATISTICAL TESTS: Five-fold cross-validation was used for model evaluation and calibration. Model performance was assessed based on sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC). RESULTS: Twenty-five image features were selected by LASSO analysis. Random forest classifier was selected for its highest performance on the training set with an AUC of 0.73. After calibration, this model achieved an accuracy of 0.70 on the testing set. Accuracies of all three radiologists improved under model reference (0.49 vs. 0.70, 0.60 vs. 0.77, 0.58 vs. 0.72, respectively). DATA CONCLUSION: The random forest model based on conventional MRI and clinical data can diagnose PCNSL and brain metastases subtypes (lung and non-lung origin). Model classification can help foster the diagnostic accuracy of specialists and streamline prognostication workflow. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.
Subject(s)
Brain Neoplasms , Lymphoma , Humans , Retrospective Studies , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Lymphoma/diagnostic imaging , Lymphoma/pathology , Central Nervous System/pathologyABSTRACT
The SQUAMOSA promoter binding protein-like (SPL) gene family is a unique family of plant-specific transcription factors (TFs), which plays vital roles in a variety of plant biological processes. Its role in betalain biosynthesis in Hylocereus undantus; however, is still unclear. Here, we report a total of 16 HuSPL genes from the pitaya genome, which were unevenly distributed among nine chromosomes. The HuSPL genes were clustered into seven groups, and most HuSPLs within the same group shared similar exon-intron structures and conserved motifs. Eight segment replication events in the HuSPL gene family were the main driving force behind the gene family expansion. Nine of the HuSPL genes had potential target sites for Hmo-miR156/157b. Hmo-miR156/157b-targeted HuSPLs exhibited differential expression patterns compared with constitutive expression patterns of most Hmo-miR156/157b-nontargeted HuSPLs. The expression of Hmo-miR156/157b gradually increased during fruit maturation, while the expression of Hmo-miR156/157b-targeted HuSPL5/11/14 gradually decreased. In addition, the lowest expression level of Hmo-miR156/157b-targeted HuSPL12 was detected 23rd day after flowering, when the middle pulps started to turn red. HuSPL5, HuSPL11, HuSPL12, and HuSPL14 were nucleus-localized proteins. HuSPL12 could inhibit the expression of HuWRKY40 by binding to its promoter. Results from yeast two-hybrid and bimolecular fluorescence complementation assays showed that HuSPL12 could interact with HuMYB1, HuMYB132, or HuWRKY42 TFs responsible for betalain biosynthesis. The results of the present study provide an essential basis for future regulation of betalain accumulation in pitaya.
Subject(s)
MicroRNAs , Plant Proteins , Plant Proteins/metabolism , MicroRNAs/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Gene Expression Regulation, PlantABSTRACT
BACKGROUND AND OBJECTIVE: Transbronchial sampling of peripheral pulmonary lesions (PPLs) is routinely performed under fluoroscopy. However, advanced ancillary techniques have become available, such as virtual bronchoscopic navigation (VBN) and radial endobronchial ultrasound with a guide sheath (rEBUS-GS). This study was performed to determine whether the diagnostic utility of VBN and rEBUS with a GS is similar with or without fluoroscopy. METHODS: This multicenter non-inferiority trial randomized patients to a VBN-rEBUS-GS with or without fluoroscopy group at three centres. The primary endpoint was the diagnostic yield. The secondary endpoints were the time for rEBUS, GS, and the total operation. Complications were also recorded. RESULTS: Four hundred and ninety-six subjects were assessed and 426 subjects were included in the analysis (212 in non-fluoroscopy-guided-group and 214 in fluoroscopy-guided-group). The diagnostic yield in the non-fluoroscopy-guided-group (84.0%) was not inferior to that in the fluoroscopy-guided-group (84.6%), with a diagnostic difference of -0.6% (95% CI: -6.4%, 5.2%). Multivariable analysis confirmed that bronchus sign and lesion nature were valuable diagnostic predictors in non-fluoroscopy-guided-group. The non-fluoroscopy-guided-group had shorter rEBUS, GS, and total operation time. No severe complications occurred in either group. CONCLUSION: Transbronchial diagnosis of PPLs suspicious of malignancy and presence of a bronchus leading to or adjacent to lesions using VBN-rEBUS-GS without fluoroscopy is a safe and effective method that is non-inferior to VBN-rEBUS-GS with fluoroscopy. Bronchus leading to lesions and malignant nature are associated with high diagnostic yield in VBN-rEBUS-GS without fluoroscopy for the diagnosis of PPLs.
Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Bronchoscopy/methods , Bronchi/diagnostic imaging , Bronchi/pathology , Endosonography/methods , Fluoroscopy/methodsABSTRACT
Nicotine-induced endoplasmic reticulum (ER) stress in retinal pigment epithelium (RPE) cells is thought to be one pathological mechanism underlying age-related macular degeneration (AMD). ERp29 attenuates tobacco extract-induced ER stress and mitigates tight junction damage in RPE cells. Herein, we aimed to further investigate the role of ERp29 in nicotine-induced ER stress and choroidal neovascularization (CNV). We found that the expression of ERp29 and GRP78 in ARPE-19 cells was increased in response to nicotine exposure. Overexpression of ERp29 decreased the levels of GRP78 and the C/EBP homologous protein (CHOP). Knockdown of ERp29 increased the levels of GRP78 and CHOP while reducing the viability of ARPE-19 cells under nicotine exposure conditions. In the ARPE-19 cell/macrophage coculture system, overexpression of ERp29 decreased the levels of M2 markers and increased the levels of M1 markers. The viability, migration and tube formation of human umbilical vein endothelial cells (HUVECs) were inhibited by conditioned medium from the ERp29-overexpressing group. Moreover, overexpression of ERp29 inhibits the activity and growth of CNV in mice exposed to nicotine in vivo. Taken together, our results revealed that ERp29 attenuated nicotine-induced ER stress, regulated macrophage polarization and inhibited CNV.
Subject(s)
Choroidal Neovascularization , Nicotine , Animals , Humans , Mice , Choroidal Neovascularization/genetics , Choroidal Neovascularization/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Human Umbilical Vein Endothelial Cells/pathology , Nicotine/pharmacology , Retinal Pigment Epithelium/metabolism , Heat-Shock Proteins/metabolismABSTRACT
Parkinson's disease (PD) is a neurodegenerative disorder characterized by extensive structural abnormalities in cortical and subcortical brain areas. However, an association between changes in the functional networks in brain white matter (BWM) and Parkinson's symptoms remains unclear. With confirming evidence that resting-state functional magnetic resonance imaging (rs-fMRI) of BWM signals can effectively describe neuronal activity, this study investigated the interactions among BWM functional networks in PD relative to healthy controls (HC). Sixty-eight patients with PD and sixty-three HC underwent rs-fMRI. Twelve BWM functional networks were identified by K-means clustering algorithm, which were further classified as deep, middle, and superficial layers. Network-level interactions were examined via coefficient Granger causality analysis. Compared with the HC, the patients with PD displayed significantly weaker functional interaction strength within the BWM networks, particularly excitatory influences from the superficial to deep networks. The patients also showed significantly weaker inhibitory influences from the deep to superficial networks. Additionally, the sum of the absolutely positive/negative regression coefficients of the tri-layered networks in the patients was lower relative to HC (p < .05, corrected for false discovery rate). Moreover, we found the functional interactions involving the deep BWM networks negatively correlated with part III of the Unified Parkinson's Disease Rating Scales and Hamilton Depression Scales. Taken together, we demonstrated attenuated BWM interactions in PD and these abnormalities were associated with clinical motor and nonmotor symptoms. These findings may aid understanding of the neuropathology of PD and its progression throughout the nervous system from the perspective of BWM function.
Subject(s)
Parkinson Disease , White Matter , Algorithms , Brain/diagnostic imaging , Humans , Mental Status and Dementia Tests , Parkinson Disease/diagnostic imaging , White Matter/diagnostic imagingABSTRACT
Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by both motor and non-motor symptoms. A convergent pathophysiological hallmark of PD is an early selective vulnerability within the basal ganglia circuit. However, the causal interactions between basal ganglia atrophy and progressive structural network alterations in PD remain unaddressed. Here, we adopted voxel-based morphometry method to measure gray matter (GM) volume for each participant (n = 84 PD patients and n = 70 matched healthy controls). Patients were first divided into three stages according to the Hoehn and Yahr (H&Y) and the Part III of Unified Parkinson's Disease Rating Scale scores respectively to analyze the stage-specific GM atrophy patterns. Then, the modulation of early caudate atrophy over other brain structures was evaluated using the whole-brain voxel-wise and region-of-interest-wise causal structural covariance network approaches. We found that GM atrophy progressively expands from the basal ganglia to the angular gyrus, temporal areas, and eventually spreads through the subcortical-cortical networks as PD progresses. Notably, we identified a shared caudate-associated degeneration network including the basal ganglia, thalamus, cerebellum, sensorimotor cortex, and cortical association areas with the PD progressive factors. These findings suggest that the early structural vulnerability of basal ganglia in PD may play a pivotal role in the modulation of motor and non-motor circuits at the structural level. Our work provides evidence for a novel mechanism of network degeneration that underlies the pathology of PD and may have potential clinical applications in the development of early predictors of PD onset and progress.
Subject(s)
Basal Ganglia/pathology , Gray Matter/pathology , Nerve Net/pathology , Parkinson Disease/pathology , Adult , Aged , Atrophy/pathology , Basal Ganglia/diagnostic imaging , Female , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Nerve Net/diagnostic imaging , Parkinson Disease/diagnostic imagingABSTRACT
BACKGROUND: Physical activity (PA) may protect against infertility by modulating the hypothalamic-pituitary-gonadal axis, thereby reducing gonadotropin levels, elevating immune function, and inhibiting inflammation and circulating sex hormones. However, whether PA reduces the risk of infertility remains largely unknown. We therefore conducted a systematic review and meta-analysis to determine the preventive effects of PA on infertility. METHODS: We searched PubMed, Cochrane Library, EMBASE, and CINAHL databases to retrieve published epidemiologic studies on the relationship between PA and infertility. Following the PRISMA guidelines, we selected English literature publishedprior to 11 April 2022, and assessed study quality using the Newcastle-Ottawa Scale. Our protocol, including the full methods employed for this review, is available on PROSPERO (ID = CRD42020143344). RESULTS: Six cohort studies and four case-control studies based on 708,965 subjects and 12,580 cases were eventually screened and retained. High levels of PA were shown to reduced risk of infertility relative to low levels (cumulative relative risk [RR] = 0.59, with a 95% confidence interval CI 0.49-0.71), and we reported results for cohort studies (RR = 0.63, 95% CI 0.50-0.79) and case-control studies (RR = 0.49, 95% CI 0.35-0.67). Our findings were comparable for men (RR = 0.65, 95% CI 0.41-1.04) and women (RR = 0.56, 95% CI 0.47-0.66). The meta-analysis of six risk estimates from five studies of low, moderate, and high PA levels showed that moderate PA may also reduce the risk of infertility compared with low PA (RR = 0.54, 95% CI 0.38-0.77). However, high PA also appeared to slightly augment the risk of infertility compared with moderate PA (RR = 1.31, 95% CI 1.08-1.59). CONCLUSIONS: This present systematic review comprehensively reflected an inverse relationship between different levels of PA and infertility, and our meta-analysis showed that a moderate-to-high PA level significantly reduced the overall risk of infertility, and that this level of PA activity was a common protective factor. In addition, limited evidence suggested that compliance with international PA guidelines would greatly lower the risk of infertility (RR = 0.58, 95% CI 0.45-0.74; I2 = 0.0%). Future studies, however, need to be executed to further determine the frequency, optimal dosage, and duration required to effectively attenuate the risk of infertility.
Subject(s)
Exercise , Infertility , Case-Control Studies , Cohort Studies , Female , Humans , MaleABSTRACT
OBJECTIVE: This work was undertaken to study the functional connectivity differences between non-seizure-free and seizure-free patients with temporal lobe epilepsy (TLE) and to identify imaging predictors for drug responsiveness in TLE. METHODS: In this prospective study, 52 patients with TLE who presented undetermined antiseizure medication responsiveness and 55 demographically matched healthy controls were sequentially recruited from Xiangya Hospital. Functional magnetic resonance imaging data were acquired during a Chinese version of the verbal fluency task. The patients were followed up until the outcome could be classified. The subject groups were compared in terms of activation profile, task-residual functional connectivity (trFC), and generalized psychophysiological interaction (gPPI) analyses. Moreover, we extracted imaging characteristics for logistic regression and receiver operating characteristic evaluation. RESULTS: With a mean follow-up of 1.1 years, we identified 27 non-seizure-free patients and 19 seizure-free patients in the final analyses. The Chinese character verbal fluency task successfully activated the language network and cognitive control network (CCN) and deactivated the default mode network (DMN). In the non-seizure-freedom group, the trFC between the hippocampus and bilateral brain networks was attenuated (p < .05, familywise error corrected). For the gPPI analysis, group differences were mainly located in the precuneus, middle frontal gyrus, and inferior parietal lobule (p < .001, uncorrected; k ≥ 10). The regression model presented high accuracy when predicting non-seizure-free patients (area under the curve = .879, 95% confidence interval = .761-.998). SIGNIFICANCE: In patients with TLE who would not achieve seizure freedom with current antiseizure medications, the functional connectivity between the hippocampus and central nodes of the DMN, CCN, and language network was disrupted, leading to language decline. Independent of hippocampal sclerosis, abnormalities, especially the effective connectivity from the hippocampus to the DMN, were predictive biomarkers of drug responsiveness in patients with TLE.
Subject(s)
Epilepsy, Temporal Lobe , Brain/diagnostic imaging , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/drug therapy , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Prospective StudiesABSTRACT
NAC transcription factors are one of the largest families of transcriptional regulators in plants, and members of the gene family play vital roles in regulating plant growth and development processes including biotic/abiotic stress responses. However, little information is available about the NAC family in pitaya. In this study, we conducted a genome-wide analysis and a total of 64 NACs (named HuNAC1-HuNAC64) were identified in pitaya (Hylocereus). These genes were grouped into fifteen subgroups with diversities in gene proportions, exon-intron structures, and conserved motifs. Genome mapping analysis revealed that HuNAC genes were unevenly scattered on all eleven chromosomes. Synteny analysis indicated that the segmental duplication events played key roles in the expansion of the pitaya NAC gene family. Expression levels of these HuNAC genes were analyzed under cold treatments using qRT-PCR. Four HuNAC genes, i.e., HuNAC7, HuNAC20, HuNAC25, and HuNAC30, were highly induced by cold stress. HuNAC7, HuNAC20, HuNAC25, and HuNAC30 were localized exclusively in the nucleus. HuNAC20, HuNAC25, and HuNAC30 were transcriptional activators while HuNAC7 was a transcriptional repressor. Overexpression of HuNAC20 and HuNAC25 in Arabidopsis thaliana significantly enhanced tolerance to cold stress through decreasing ion leakage, malondialdehyde (MDA), and H2O2 and O2- accumulation, accompanied by upregulating the expression of cold-responsive genes (AtRD29A, AtCOR15A, AtCOR47, and AtKIN1). This study presents comprehensive information on the understanding of the NAC gene family and provides candidate genes to breed new pitaya cultivars with tolerance to cold conditions through genetic transformation.
Subject(s)
Arabidopsis , Cactaceae , Arabidopsis/metabolism , Cactaceae/metabolism , Cold-Shock Response/genetics , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Phylogeny , Plant Breeding , Plant Proteins/metabolism , Stress, Physiological/genetics , Transcription Factors/metabolismABSTRACT
The WRKY gene family is a plant-specific transcription factor (TF) that regulates many physiological processes and (a) biotic stress responses. Despite this, little is known about the molecular properties and roles of WRKY TFs in pitaya betalain biosynthesis. Here we report the identification of 70 WRKY in Hylocereus undatus, their gene structure, locations on each chromosome, systematic phylogenetic analysis, conserved motif analysis, and synteny of HuWRKY genes. HmoWRKY42 is a Group IIb WRKY protein and contains a coiled-coil motif, a WRKY domain and a C2H2 zinc-finger motif (CX5CX23HXH). Results from yeast one-hybrid and transient dual-luciferase assays showed that HmoWRKY42 was a transcriptional repressor and could repress HmocDOPA5GT1 expression by binding to its promoter. Yeast two-hybrid assays showed that HmoWRKY42 could interact with itself to form homodimers. Knocking out the coiled-coil motif of HmoWRKY42 prevented its self-interaction and prevented it from binding to the HmocDOPA5GT1 promoter. Knocking out the WRKY domain and C2H2 zinc-finger motif sequence of HmoWRKY42 also prevented it from binding to the HmocDOPA5GT1 promoter. The coiled-coil motif, the WRKY domain and the C2H2 zinc finger motif are key motifs for the binding of HmoWRKY42 to the HmocDOPA5GT1 promoter. HmoWRKY42 is localized in the nucleus and possesses trans-activation ability responsible for pitaya betalain biosynthesis by repressing the transcription of HmocDOPA5GT1. As far as we know, no reports are available on the role of HmoWRKY42 in pitaya betalain biosynthesis. The results provide an important foundation for future analyses of the regulation and functions of the HuWRKY gene family.