Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
PLoS Genet ; 18(7): e1010285, 2022 07.
Article in English | MEDLINE | ID: mdl-35830385

ABSTRACT

During evolutionary adaptation, the mechanisms for self-regulation are established between the normal growth and development of plants and environmental stress. The phytohormone jasmonate (JA) is a key tie of plant defence and development, and JASMONATE-ZIM DOMAIN (JAZ) repressor proteins are key components in JA signalling pathways. Here, we show that JAZ expression was affected by leaf senescence from the transcriptomic data. Further investigation revealed that SlJAZ10 and SlJAZ11 positively regulate leaf senescence and that SlJAZ11 can also promote plant regeneration. Moreover, we reveal that the SlJAV1-SlWRKY51 (JW) complex could suppress JA biosynthesis under normal growth conditions. Immediately after injury, SlJAZ10 and SlJAZ11 can regulate the activity of the JW complex through the effects of electrical signals and Ca2+ waves, which in turn affect JA biosynthesis, causing a difference in the regeneration phenotype between SlJAZ10-OE and SlJAZ11-OE transgenic plants. In addition, SlRbcs-3B could maintain the protein stability of SlJAZ11 to protect it from degradation. Together, SlJAZ10 and SlJAZ11 not only act as repressors of JA signalling to leaf senescence, but also regulate plant regeneration through coordinated electrical signals, Ca2+ waves, hormones and transcriptional regulation. Our study provides critical insights into the mechanisms by which SlJAZ11 can induce regeneration.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium/metabolism , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Oxylipins/metabolism , Plant Senescence , Plants, Genetically Modified/metabolism , Regeneration/genetics , Signal Transduction/genetics
2.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38473738

ABSTRACT

MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.


Subject(s)
MADS Domain Proteins , Solanum lycopersicum , MADS Domain Proteins/genetics , Flowers/genetics , Phylogeny , Plant Proteins/genetics , Transcription Factors/metabolism
4.
Int J Mol Sci ; 25(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39273380

ABSTRACT

The bHLH transcription factors are important plant regulators against abiotic stress and involved in plant growth and development. In this study, SlALC, a gene coding for a prototypical DNA-binding protein in the bHLH family, was isolated, and SlALC-overexpression tomato (SlALC-OE) plants were generated by Agrobacterium-mediated genetic transformation. SlALC transgenic lines manifested higher osmotic stress tolerance than the wild-type plants, estimated by higher relative water content and lower water loss rate, higher chlorophyll, reducing sugar, starch, proline, soluble protein contents, antioxidant enzyme activities, and lower MDA and reactive oxygen species contents in the leaves. In SlALC-OE lines, there were more significant alterations in the expression of genes associated with stress. Furthermore, SlALC-OE fruits were more vulnerable to dehiscence, with higher water content, reduced lignin content, SOD/POD/PAL enzyme activity, and lower phenolic compound concentrations, all of which corresponded to decreased expression of lignin biosynthetic genes. Moreover, the dual luciferase reporter test revealed that SlTAGL1 inhibits SlALC expression. This study revealed that SlALC may play a role in controlling plant tolerance to drought and salt stress, as well as fruit lignification, which influences fruit dehiscence. The findings of this study have established a foundation for tomato tolerance breeding and fruit quality improvement.


Subject(s)
Droughts , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Plants, Genetically Modified , Salt Tolerance , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Fruit/genetics , Fruit/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Stress, Physiological
5.
Plant Mol Biol ; 111(1-2): 57-72, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36207656

ABSTRACT

KEY MESSAGE: 1. Purple flowering stalk (Brassica campestris L. ssp. chinensis L. var. purpurea Bailey) is a crop with the high-level anthocyanin. 2. Increased abundance of LBGs promoted the synthesis of anthocyanin. 3. TTG2 (WRKY) interacted with TTG1 (WD40), probably regulating anthocyanin accumulation by shaping a MBWW complex. Brassica crops are a class of nutrient-rich vegetables. Here, two Brassica Crops-Flowering Stalk cultivars, purple flowering stalk (Brassica campestris L. var. purpurea Bailey) and pakchoi (Brassica campestris ssp. chinensis var. communis) were investigated. HPLC-ESI-MS/MS analysis demonstrated that Cy 3-p-coumaroylsophoroside-5-malonylglucoside and Cy 3-diferuloylsophoroside-5-malonylglucoside were identified as the major anthocyanin in peel of purple flowering stalk. The transcript level of structural genes including C4H, CHS, F3H, DFR, ANS and UFGT, and regulatory genes such as TT8, TTG1, Bra004162, Bra001917 and TTG2 in peel of purple flowering stalk were significantly higher than that in peel of pakchoi. In addition, the TTG2(WRKY) interacted only with TTG1(WD40) and the interaction between TT8 (bHLH) and TTG1/Bra004162(MYB)/Bra001917(MYB) were identified. Else, the WD40-WRKY complex (TTG1-TTG2) could activate the transcript of TT12. Our study laid a foundation for the research on the anthocyanin accumulation in Brassica crops.


Subject(s)
Brassica , Brassica/genetics , Brassica/metabolism , Anthocyanins/genetics , Tandem Mass Spectrometry , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
6.
J Exp Bot ; 74(18): 5709-5721, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37527459

ABSTRACT

Trihelix proteins are plant-specific transcription factors that are classified as GT factors due to their binding specificity for GT elements, and they play crucial roles in development and stress responses. However, their involvement in fruit ripening and transcriptional regulatory mechanisms remains largely unclear. In this study, we cloned SlGT31, encoding a trihelix protein in tomato (Solanum lycopersicum), and determined that its relative expression was significantly induced by the application of exogenous ethylene whereas it was repressed by the ethylene-inhibitor 1-methylcyclopropene. Suppression of SlGT31 expression resulted in delayed fruit ripening, decreased accumulation of total carotenoids, and reduced ethylene content, together with inhibition of expression of genes related to ethylene and fruit ripening. Conversely, SlGT31-overexpression lines showed opposite results. Yeast one-hybrid and dual-luciferase assays indicated that SlGT31 can bind to the promoters of two key ethylene-biosynthesis genes, ACO1 and ACS4. Taken together, our results indicate that SlGT31 might act as a positive modulator during fruit ripening.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Ethylenes/metabolism , Plant Proteins/metabolism
7.
Plant Cell Rep ; 42(12): 1907-1925, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37776371

ABSTRACT

KEY MESSAGE: Overexpression of SlPRE3 is detrimental to the photosynthesis and alters plant morphology and root development. SlPRE3 interacts with SlAIF1/SlAIF2/SlPAR1/SlIBH1 to regulate cell expansion. Basic helix-loop-helix (bHLH) transcription factors play crucial roles as regulators in plant growth and development. In this study, we isolated and characterized SlPRE3, an atypical bHLH transcription factor gene. SlPRE3 exhibited predominant expression in the root and moderate expression in the senescent leaves. Comparative analysis with the wild type revealed significant differences in plant morphology in the 35S:SlPRE3 lines. These differences included increased internode length, rolling leaves with reduced chlorophyll accumulation, and elongated yet fewer adventitious roots. Additionally, 35S:SlPRE3 lines displayed elevated levels of GA3 (gibberellin A3) and reduced starch accumulation. Furthermore, utilizing the Y2H (Yeast two-hybrid) and the BiFC (Bimolecular Fluorescent Complimentary) techniques, we identified physical interactions between SlPRE3 and SlAIF1 (ATBS1-interacting factor 1)/SlAIF2 (ATBS1-interacting factor 2)/SlPAR1 (PHYTOCHROME RAPIDLY REGULATED 1)/SlIBH1 (ILI1-binding bHLH 1). RNA-seq analysis of root tissues revealed significant alterations in transcript levels of genes involved in gibberellin metabolism and signal transduction, cell expansion, and root development. In summary, our study sheds light on the crucial regulatory role of SlPRE3 in determining plant morphology and root development.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Development , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Plant Cell Rep ; 42(2): 371-383, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36512035

ABSTRACT

KEY MESSAGE: Our findings indicated that the SlERF.J2-IAA23 module integrates hormonal signals to regulate hypocotyl elongation and plant height in tomato. Light and phytohormones can synergistically regulate photomorphogenesis-related hypocotyl elongation and plant height in tomato. AP2/ERF family genes have been extensively demonstrated to play a role in light signaling and various hormones. In this study, we identified a novel AP2/ERF family gene in tomato, SlERF.J2. Overexpression of SlERF.J2 inhibits hypocotyl elongation and plant height. However, the plant height in the slerf.j2ko knockout mutant was not significantly changed compared with the WT. we found that hypocotyl cell elongation and plant height were regulated by a network involving light, auxin and gibberellin signaling, which is mediated by regulatory relationship between SlERF.J2 and IAA23. SlERF.J2 protein could bind to IAA23 promoter and inhibit its expression. In addition, light-dark alternation can activate the transcription of SlERF.J2 and promote the function of SlERF.J2 in photomorphogenesis. Our findings indicated that the SlERF.J2-IAA23 module integrates hormonal signals to regulate hypocotyl elongation and plant height in tomato.


Subject(s)
Solanum lycopersicum , Transcription Factors , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant/genetics , Hypocotyl/genetics , Hypocotyl/metabolism , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Light , Solanum lycopersicum/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
9.
Int J Mol Sci ; 25(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38203345

ABSTRACT

ALKBH proteins, the homologs of Escherichia coli AlkB dioxygenase, constitute a single-protein repair system that safeguards cellular DNA and RNA against the harmful effects of alkylating agents. ALKBH10B, the first discovered N6-methyladenosine (m6A) demethylase in Arabidopsis (Arabidopsis thaliana), has been shown to regulate plant growth, development, and stress responses. However, until now, the functional role of the plant ALKBH10B has solely been reported in arabidopsis, cotton, and poplar, leaving its functional implications in other plant species shrouded in mystery. In this study, we identified the AlkB homolog SlALKBH10B in tomato (Solanum lycopersicum) through phylogenetic and gene expression analyses. SlALKBH10B exhibited a wide range of expression patterns and was induced by exogenous abscisic acid (ABA) and abiotic stresses. By employing CRISPR/Cas9 gene editing techniques to knock out SlALKBH10B, we observed an increased sensitivity of mutants to ABA treatment and upregulation of gene expression related to ABA synthesis and response. Furthermore, the Slalkbh10b mutants displayed an enhanced tolerance to drought and salt stress, characterized by higher water retention, accumulation of photosynthetic products, proline accumulation, and lower levels of reactive oxygen species and cellular damage. Collectively, these findings provide insights into the negative impact of SlALKBH10B on drought and salt tolerance in tomato plant, expanding our understanding of the biological functionality of SlALKBH10B.


Subject(s)
Arabidopsis , Escherichia coli Proteins , Solanum lycopersicum , Salt Tolerance/genetics , Droughts , Phylogeny , Solanum lycopersicum/genetics , Abscisic Acid , Escherichia coli , AlkB Enzymes , Mixed Function Oxygenases
10.
Plant Cell Rep ; 41(8): 1631-1650, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35575808

ABSTRACT

Melatonin has attracted widespread attention after its discovery in higher plants. Tomato is a key model economic crop for studying fleshy fruits. Many studies have shown that melatonin plays important role in plant stress resistance, growth, and development. However, the research progress on the role of melatonin and related mechanisms in tomatoes have not been systematically summarized. This paper summarizes the detection methods and anabolism of melatonin in tomatoes, including (1) the role of melatonin in combating abiotic stresses, e.g., drought, heavy metals, pH, temperature, salt, salt and heat, cold and drought, peroxidation hydrogen and carbendazim, etc., (2) the role of melatonin in combating biotic stresses, such as tobacco mosaic virus and foodborne bacillus, and (3) the role of melatonin in tomato growth and development, such as fruit ripening, postharvest shelf life, leaf senescence and root development. In addition, the future research directions of melatonin in tomatoes are explored in combination with the role of melatonin in other plants. This review can provide a theoretical basis for enhancing the scientific understanding of the role of melatonin in tomatoes and the improved breeding of fruit crops.


Subject(s)
Melatonin , Solanum lycopersicum , Droughts , Growth and Development , Solanum lycopersicum/physiology , Plant Breeding , Plants , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL