Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Parasitol Res ; 123(1): 108, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38263530

ABSTRACT

Enterocytozoon bieneusi and Blastocystis may cause diarrhea in humans and various animals. However, little information is available regarding the prevalence and genetic diversity of E. bieneusi and Blastocystis in donkeys. To fill this gap, we molecularly assessed E. bieneusi and Blastocystis in fecal samples from donkeys (n = 815) in Shanxi Province, north China. The overall prevalence of E. bieneusi and Blastocystis in donkeys was 8.1% and 0.2%, respectively. Region and age were risk factors associated with E. bieneusi infection in donkeys. Three internal transcribed spacer (ITS) genotypes of E. bieneusi were identified in the current study, including two previously described genotypes (D and Henan-IV) and one novel genotype (named SXD1). Of which, genotype D was found to be the most prevalent. Phylogenetic analysis demonstrated that the three genotypes belonged to group 1, implying a potential of zoonotic transmission. Multilocus sequence typing showed that 19, 15, 13, and 22 types were identified at the loci MS1, MS3, MS4, and MS7, respectively, forming six multilocus genotypes (MLGs) distributed in the genotype D. One Blastocystis subtype (ST33) was identified, which has previously been reported only in horses. This is the first molecular-based description of E. bieneusi and Blastocystis infections in donkeys in Shanxi Province, north China, contributing to a better understanding of transmission dynamics and molecular epidemiological characteristics of the two intestinal protozoa.


Subject(s)
Blastocystis , Enterocytozoon , Humans , Horses , Animals , Equidae , Phylogeny , Prevalence , China , Genotype
2.
Parasitol Res ; 119(11): 3649-3657, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32951143

ABSTRACT

Toxoplasma gondii is a protozoan parasite capable of infecting a large number of warm-blooded animals and causes serious health complications in immunocompromised patients. T. gondii infection of the feline small intestine is critical for the completion of the life cycle and transmission of T. gondii. Protein acetylation is an important posttranslational modification, which plays roles in the regulation of various cellular processes. Therefore, understanding of how T. gondii reprograms the protein acetylation status of feline definitive host can help to thwart the production and spread of T. gondii. Here, we used affinity enrichment and high-resolution liquid chromatography with tandem mass spectrometry to profile the alterations of the acetylome in cat small intestine 10 days after infection by T. gondii Prugniuad (Pru) strain. Our analysis showed that T. gondii induced significant changes in the acetylation of proteins in the cat intestine. We identified 2606 unique lysine acetylation sites in 1357 acetylated proteins. The levels of 334 acetylated peptides were downregulated, while the levels of 82 acetylated peptides were increased in the infected small intestine. The proteins with differentially acetylated peptides were particularly enriched in the bioenergetics-related processes, such as tricarboxylic acid cycle, oxidative phosphorylation, and oxidation-reduction. These results provide the first baseline of the global acetylome of feline small intestine following T. gondii infection and should facilitate further analysis of the role of acetylated protein in the pathogenesis of T. gondii infection in its definitive host.


Subject(s)
Cat Diseases/parasitology , Intestine, Small/metabolism , Toxoplasma , Toxoplasmosis/metabolism , Acetylation , Animals , Cat Diseases/metabolism , Cats , Chromatography, High Pressure Liquid/veterinary , Female , Intestine, Small/parasitology , Lysine/metabolism , Male , Protein Processing, Post-Translational , Tandem Mass Spectrometry/veterinary , Toxoplasma/metabolism
3.
Parasitol Res ; 119(1): 321-326, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31788771

ABSTRACT

Enterocytozoon bieneusi is an opportunistic enteric pathogen which can infect a wide range of animal species and humans. It is the most diagnosed species of Microsporidia in humans and has an impact on public health. Many infected animals including foxes may be a potential source for transmitting E. bieneusi to humans. However, limited information is available on the E. bieneusi prevalence and genotypes in farmed foxes in China. Therefore, in the present study, 344 fresh fecal samples were collected from farmed foxes (Vulpes vulpes and Vulpes lagopus) in Shandong Province, and the prevalence and genotypes of E. bieneusi were examined based on sequence analysis of the ribosomal internal transcribed spacer (ITS) region. The overall E. bieneusi prevalence was 9% (31/344); of them, 6.5% (9/138) in farmed silver foxes (V. vulpes) and 10.7% (22/206) in farmed arctic foxes (V. lagopus). Moreover, four known (Hum-q1, NCF2, HND-1, and Type IV) and two novel E. bieneusi genotypes (SDF1 and SDF2) were identified in farmed foxes in the present study. All of the E. bieneusi genotypes belonged to the zoonotic group based on phylogenetic analysis. In addition, 2, 4, 0, and 11 samples were successfully amplified at MS1, MS3, MS4, and MS7 loci, respectively. The present study reveals E. bieneusi prevalence and genotype distribution in farmed foxes in Shandong Province and enlarged the host and geographic information of E. bieneusi in China.


Subject(s)
Enterocytozoon/genetics , Enterocytozoon/isolation & purification , Foxes/microbiology , Microsporidiosis/veterinary , Animals , China/epidemiology , DNA, Ribosomal Spacer/genetics , Enterocytozoon/classification , Farms , Feces/microbiology , Fungal Proteins/genetics , Genotype , Microsporidiosis/epidemiology , Microsporidiosis/microbiology , Phylogeny , Prevalence
4.
Korean J Parasitol ; 58(2): 181-184, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32418387

ABSTRACT

Blastocystis, an enteric protist, has been reported to be an important cause of protozoal gastrointestinal manifestations in humans and animals worldwide. Animals harboring certain Blastocystis subtypes (STs) may serve as a potential source of human infection. However, information about the prevalence and genetic diversity of Blastocystis in alpacas is limited. In the present study, a total of 366 fecal samples from alpacas in Shanxi Province, northern China, were examined for Blastocystis by PCR amplification of the small subunit rRNA gene, followed by sequencing and phylogenetic analysis. The prevalence of Blastocystis in alpacas was 23.8%, and gender difference in the prevalence of Blastocystiswas observed. The most predominant Blastocystis ST was ST10, followed by ST14 and ST5. The detection of ST5, a potentially zoonotic genotype, indicates that alpacas harboring ST5 could be a potential source of human infection with Blastocystis. These data provide new insight into the prevalence and genetic diversity of Blastocystis in alpacas.


Subject(s)
Animal Diseases/epidemiology , Animal Diseases/parasitology , Blastocystis Infections/epidemiology , Blastocystis Infections/veterinary , Blastocystis , Camelids, New World/parasitology , Animals , China/epidemiology , Prevalence
5.
Parasitol Res ; 118(12): 3371-3375, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31705288

ABSTRACT

Enterocytozoon bieneusi is a single-celled obligate pathogen that seriously threatens animal and public health. However, information on the prevalence and genotypes of E. bieneusi in alpacas in China is limited. In the present study, 366 fresh fecal samples from alpacas in Shanxi Province, northern China, were collected to detect E. bieneusi by nested PCR amplification of the internal transcribed spacer (ITS) of nuclear ribosomal DNA (rDNA). The overall prevalence of E. bieneusi in alpacas was 4.4% (16/366), including 3.9% (12/305) in Yangqu County and 6.6% (4/61) in Dai county, respectively. Four known genotypes were identified, namely ALP1, ALP3, P, and SH11, all of which belong to the zoonotic group 1 by phylogenetic analysis. Moreover, ITS-positive samples were further characterized by PCR amplification of other four targets, including three microsatellites (MS1, MS3, and MS7) and one minisatellite (MS4). Multilocus sequence typing (MLST) showed that 5, 2, 3, and 3 types were identified at MS1, MS3, MS7, and MS4 loci, respectively, representing eight multilocus genotypes (MLGs). These findings contribute to the improved understanding of the prevalence and genotypes of E. bieneusi in alpacas in China and have important implications for controlling E. bieneusi infections in animals and humans.


Subject(s)
Camelids, New World/parasitology , DNA, Intergenic/genetics , Enterocytozoon/genetics , Microsatellite Repeats/genetics , Microsporidiosis/veterinary , Parasitic Diseases, Animal/parasitology , Animals , China/epidemiology , Enterocytozoon/classification , Enterocytozoon/isolation & purification , Feces/parasitology , Genotype , Humans , Microsporidiosis/epidemiology , Multilocus Sequence Typing , Phylogeny , Polymerase Chain Reaction , Prevalence
6.
Animals (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929427

ABSTRACT

Blastocystis spp. and Giardia duodenalis are two prevalent zoonotic intestinal parasites that can cause severe diarrhea and intestinal diseases in humans and many animals. Black goat (Capra hircus) farming is increasingly important in China due to the remarkable adaptability, high reproductive performance, rapid growth rate, and significant economic value of black goats. A number of studies have indicated that black goats are the potential reservoir of multiple zoonotic protozoans in China; however, the prevalence and zoonotic status of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province is still unknown. Thus, a total of 1200 fecal samples of black goats were collected from several representative regions at different altitudes in Shanxi Province and were examined for the presence and genotypes of G. duodenallis and Blastocystis spp. by amplifying the beta-giardin (bg), glutamate dehydrogenase (gdh), and triosephosphate isomerase (tpi) loci of G. duodenalis and SSU rRNA of Blastocystis spp. using PCR and sequence analysis methods, respectively. The overall prevalence of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province were 7.5% and 3.5%, respectively. Two assemblages (B and E) of G. duodenalis and four subtypes (ST5, ST10, ST14, and ST30) of Blastocystis spp. were identified, with assemblage E and ST10 as the prevalent genotype and subtype in black goats, respectively. One novel multilocus genotype (MLG) was identified in MLG-E and was designated as MLG-E12. For both G. duodenalis and Blastocystis spp., the prevalence was significantly related to the region and age groups (p < 0.05). This is the first report on the prevalence of G. duodenalis and Blastocystis spp. in black goats in Shanxi Province. These results not only provide baseline data for the prevention and control of both parasites in black goats in Shanxi Province, but also enhance our understanding of the genetic composition and zoonotic potential of these two parasites.

7.
Infect Dis Poverty ; 12(1): 68, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37491273

ABSTRACT

BACKGROUND: Felids are the only definitive hosts of Toxoplasma gondii. However, the biological features of the feline small intestine following T. gondii infection are poorly understood. We investigated the changes in the expression of RNAs (including mRNAs, long non-coding RNAs and circular RNAs) in the small intestinal epithelia of cats following T. gondii infection to improve our understanding of the life cycle of T. gondii and cat responses to T. gondii infection. METHODS: Fifteen cats were randomly assigned to five groups, and the infection groups were inoculated with 600 tissue cysts of the T. gondii Pru strain by gavage. The small intestinal epithelia of cats were collected at 6, 10, 14, and 30 days post infection (DPI). Using high-throughput RNA sequencing (RNA-seq), we investigated the changes in RNA expression. The expression levels of differentially expressed (DE) genes and non-coding RNAs (ncRNAs) identified by RNA-seq were validated by quantitative reverse transcription PCR (qRT-PCR). Differential expression was determined using the DESeq R package. RESULTS: In total, 207 annotated lncRNAs, 20,552 novel lncRNAs, 3342 novel circRNAs and 19,409 mRNAs were identified. Among these, 70 to 344 DE mRNAs, lncRNAs and circRNAs were detected, and the post-cleavage binding sites between 725 ncRNAs and 2082 miRNAs were predicted. Using the co-location method, we predicted that a total of 235 lncRNAs target 1044 protein-coding genes, while the results of co-expression analysis revealed that 174 lncRNAs target 2097 mRNAs. Pathway enrichment analyses of the genes targeted by ncRNAs suggested that most ncRNAs were significantly enriched in immune or diseases-related pathways. NcRNA regulatory networks revealed that a single ncRNA could be directly or indirectly regulated by multiple genes or ncRNAs that could influence the immune response of cats. Co-expression analysis showed that 242 circRNAs, mainly involved in immune responses, were significantly associated with T. gondii infection. In contrast, 1352 protein coding RNAs, mainly involved in nucleic acid process/repair pathways or oocyte development pathways, were negatively associated with T. gondii infection. CONCLUSIONS: This study is the first to reveal the expression profiles of circRNAs, lncRNAs and mRNAs in the cat small intestine following T. gondii infection and will facilitate the elucidation of the role of ncRNAs in the pathogenesis of T. gondii infection in its definitive host, thereby facilitating the development of novel intervention strategies against T. gondii infection in humans and animals.


Subject(s)
RNA, Long Noncoding , Toxoplasma , Toxoplasmosis , Animals , Cats , Gene Expression Profiling , RNA, Circular/genetics , RNA, Long Noncoding/genetics , Toxoplasma/genetics
8.
Animals (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003154

ABSTRACT

Toxoplasma gondii, an obligate intracellular parasite, has the ability to invade and proliferate within most nucleated cells. The invasion and destruction of host cells by T. gondii lead to significant changes in the cellular signal transduction network. One important post-translational modification (PTM) of proteins is phosphorylation/dephosphorylation, which plays a crucial role in cell signal transmission. In this study, we aimed to investigate how T. gondii regulates signal transduction in definitive host cells. We employed titanium dioxide (TiO2) affinity chromatography to enrich phosphopeptides in the small intestinal epithelia of cats at 10 days post-infection with the T. gondii Prugniuad (Pru) strain and quantified them using iTRAQ technology. A total of 4998 phosphopeptides, 3497 phosphorylation sites, and 1805 phosphoproteins were identified. Among the 705 differentially expressed phosphoproteins (DEPs), 68 were down-regulated and 637 were up-regulated. The bioinformatics analysis revealed that the DE phosphoproteins were involved in various cellular processes, including actin cytoskeleton reorganization, cell necroptosis, and MHC immune processes. Our findings confirm that T. gondii infection leads to extensive changes in the phosphorylation of proteins in the cat intestinal epithelial cells. The results of this study provide a theoretical foundation for understanding the interaction between T. gondii and its definitive host.

9.
Animals (Basel) ; 13(18)2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37760242

ABSTRACT

Blastocystis is a common zoonotic intestinal protozoan and causes a series of gastrointestinal symptoms in humans and animals via the fecal-oral route, causing economic losses and posing public health problems. At present, the prevalence and genetic structure of Blastocystis in sheep and pigs in Shanxi province remains unknown. Thus, the present study collected 492 sheep fecal samples and 362 pig fecal samples from three representative counties in northern, central and southern Shanxi province for the detection of Blastocystis based on its SSU rRNA gene. The results showed that the overall prevalence of Blastocystis in the examined sheep and pigs were 16.26% and 14.09%, respectively. Sequences analyses showed that four known subtypes (ST5, ST10, ST14 and ST30) in sheep and two subtypes (ST1 and ST5) in pigs were detected in this study, with ST5 being the predominate subtype among the study areas. Phylogenetic analysis showed that the same subtypes were clustered into the same branch. This study reveals that sheep and pigs in Shanxi province are hosts for multiple Blastocystis subtypes, including the zoonotic subtypes (ST1 and ST5), posing a risk to public health. Baseline epidemiological data are provided that help in improving our understanding of the role of zoonotic subtypes in Blastocystis transmission.

10.
Animals (Basel) ; 13(18)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37760332

ABSTRACT

Both Cryptosporidium spp. and Blastocystis sp. are common intestinal protozoa, which can cause zoonotic diseases and economic losses to livestock industry. To evaluate the prevalence and genetic population structure of Cryptosporidium spp. and Blastocystis sp. in beef and dairy cattle in Shanxi Province, north China, a total of 795 fecal samples were collected from beef and dairy cattle in three representative counties in Shanxi Province, and these fecal samples were examined using molecular approaches based on 18S small-subunit ribosomal RNA (SSU rRNA) of Cryptosporidium spp. and Blastocystis sp., respectively. Among 795 cattle fecal samples, 23 were detected as Cryptosporidium-positive and 103 were detected as Blastocystis-positive, and the overall prevalence of Cryptosporidium spp. and Blastocystis sp. in cattle in Shanxi Province was 2.9% and 13.0%, respectively. For Cryptosporidium spp., DNA sequence analysis indicated that all 23 positive samples were identified as C. andersoni. Furthermore, five known subtypes (ST1, ST10, ST14, ST21 and ST26) and three unknown subtypes of Blastocystis sp. were detected among 103 positive samples using DNA sequence analysis. This study reported the occurrence and prevalence of Cryptosporidium spp. and Blastocystis sp. in cattle in Shanxi Province for the first time, which extends the geographical distribution of these two zoonotic parasites and provides baseline data for the prevention and control of these two important zoonotic parasites in cattle in Shanxi Province.

11.
Animals (Basel) ; 13(24)2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38136808

ABSTRACT

Giardia duodenalis is a ubiquitous flagellated protozoan, causing significant economic losses to animal husbandry and posing threats to public health. China ranks the world's sixth largest major producer of donkeys, rearing approximately 2.6 million donkeys in 2019, but limited investigation of G. duodenalis prevalence has been conducted in the past, and it is yet to be known whether donkeys in Shanxi Province are infected with G. duodenalis. In the present study, a total of 815 fecal samples collected from donkeys in representative regions of Shanxi Province, North China, were examined for G. duodenalis using nested PCR. Then, the assemblages and multilocus genotypes (MLGs) were examined based on three established loci: namely, ß-giardin (bg), triosephosphate isomerase (tpi), and glutamate dehydrogenase (gdh). The overall prevalence of G. duodenalis in donkeys in Shanxi Province was 16.81% (137/815). The region was identified as the main risk factor for the observed difference in G. duodenalis prevalence in donkeys among the three study areas (χ2 = 21.611, p < 0.001). Assemblages A, E, and B were identified, with the latter as the predominant assemblage. Three MLGs (MLG-novel-1 to 3) were formed based on sequence variation among the three loci. The present study reveals the presence of G. duodenalis in donkeys in Shanxi Province, North China, for the first time, which not only enriches the data on the distribution of G. duodenalis in donkeys in China but also provides useful baseline data for planning control strategies against G. duodenalis infection in the sampled areas.

12.
Animals (Basel) ; 12(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35739856

ABSTRACT

Toxocara canis is a neglected zoonotic roundworm distributed all over the world, causing toxocariasis in humans and animals. However, so far, the immune mechanism of T. canis infection in definitive hosts remains to be clarified. In this study, the transcriptional alterations of Beagle dogs' peripheral blood mononuclear cells (PBMCs) induced by T. canis infection during the lung infection period were analyzed using RNA-seq technology. A total of 2142 differentially expressed genes were identified, with 1066 upregulated genes and 1076 downregulated genes. Many differentially expressed genes participated in the biological process of intracellular signal transduction, as well as the immune- or inflammation-related KEGG signaling pathway, such as the Notch signaling pathway, Toll-like receptor signaling pathway, and NF-kappa B signaling pathway, through KEGG enrichment analysis. This study indicated that T. canis infection could suppress the biological function of Beagle dogs' PMBCs and provided basic data to further clarify the interaction mechanism between T. canis and host immune cells.

13.
Vet Parasitol ; 309: 109764, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35870221

ABSTRACT

Toxoplasma gondii (T. gondii) is a zoonotic intracellular protozoan parasite that can invade, replicate and survive in almost all cells of warm-blooded animals. T. gondii infection threatens the life of the fetus or can cause morbidity in the infant. As the only definitive host of T. gondii, felids spread the pathogen mainly by forming oocysts in the small intestines and discharging the oocysts into the ambient environment, consequently polluting water, vegetables, and meat products. In this study, we used untargeted metabolomics technology to study the changes in metabolites that occurred during the early stage of oocyst formation in the cat small intestine following T. gondii infection and attempted to identify metabolic biomarkers that could potentially be used as diagnostic molecular markers in the future. Domestic cats (Felis catus) were infected with T. gondii Pru tissue cysts, and samples of their small intestinal epithelium were collected at 2 and 4 days post-infection (DPI) for metabolic analysis. LC-MS/MS and multivariate statistical analysis were employed to detect metabolomic signatures that discriminated between the infected and control groups. A total of 1673 ions and 1201 ions were obtained in the positive and negative modes, respectively. Of these ions, 175 were up-regulated and 127 were down-regulated in the positive ion mode; whereas, 123 were up-regulated and 81 were down-regulated in the negative ion mode. Three commonly altered ions (0.74_313.0414 m/z, 8.82_615.2621 m/z and 8.16_325.2362 m/z) were determined to have potential research value. Seventy common metabolic pathways were enriched at two time points, with arginine biosynthesis, pyrimidine metabolism, pantothenate and CoA biosynthesis being the three most significant pathways related to T. gondii. The area under the curve (AUC) of differential metabolites combined with relevant literature analysis showed that N-Methylpelletierine and 3,3-Difluoro-17-methyl-5alpha-androstan-17beta-ol have higher predictability and better potential application value than other metabolites. Our analysis of metabolic markers during the early stage of T. gondii oocyst formation in the small intestine of the definitive host (cat) provided novel insight for understanding oocyst development and a theoretical basis for the application of potential biomarkers.


Subject(s)
Cat Diseases , Toxoplasma , Toxoplasmosis, Animal , Animals , Animals, Domestic , Biomarkers , Cat Diseases/diagnosis , Cats , Chromatography, Liquid/veterinary , Feces/parasitology , Humans , Intestine, Small , Metabolomics , Oocysts , Tandem Mass Spectrometry/veterinary , Toxoplasmosis, Animal/diagnosis , Toxoplasmosis, Animal/parasitology
14.
Animals (Basel) ; 12(19)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36230377

ABSTRACT

Toxocara canis is an unnoticed zoonotic helminth that causes severe disease in animals and humans. The spleen has a wide range of immunological functions in protecting the host against infection by many pathogens, but the function of the spleen in T. canis infection is still to be clarified, especially for the role of spleen microRNAs (miRNAs). In this study, deep sequencing of spleen RNA samples of 18 Beagle puppies was conducted to uncover the miRNAs expression profiling at 24 h post-infection (hpi), 96 hpi, and 36 days post infection (dpi). A total of 20, 34, and 19 differentially expressed miRNAs (DEmiRNAs) were identified at 24 hpi, 96 hpi, and 36 dpi, respectively. These DEmiRNAs (e.g., cfa-miR-206, cfa-miR-331, and cfa-miR-339) could play critical roles in Beagle puppies against T. canis infection, such as influencing inflammatory and immune-related cells and cytokines, by regulating target genes that are tightly associated with host immune function and enriched in immune response and immune pathways based on GO annotation and KEGG enrichment analysis. The current study discovered marked alterations of spleen miRNAs after T. canis infection, with potential effects on the pathogenesis of toxocariasis.

15.
Front Cell Infect Microbiol ; 12: 890589, 2022.
Article in English | MEDLINE | ID: mdl-36176575

ABSTRACT

A global lipidomic analysis using liquid chromatography-tandem mass spectrometry was performed on the liver of beagle dogs infected with Toxocara canis to profile hepatic lipid species at 12 h post-infection (hpi), 24 hpi, and 36 days post-infection (dpi). This analysis identified six categories and 42 subclasses of lipids, including 173, 64, and 116 differentially abundant lipid species at 12 hpi, 24 hpi, and 36 dpi, respectively. Many of the identified lysophospholipids, such as lysophosphatidylglycerol, lysophosphatidylserine, and lysophosphatidylcholine, may contribute to the migration and development of T. canis during the early infection stage. Pathway analysis revealed significant alterations of several immune-inflammatory pathways, such as the B-cell receptor signaling pathway, the NF-kappa B signaling pathway, and the C-type lectin receptor signaling pathway at 12 and 24 hpi. These findings demonstrate the value of lipidomic profiling in revealing the extent of changes in the composition and abundance of hepatic lipidome caused by T. canis infection and their relevance to the pathophysiology of toxocariasis in beagle dogs.


Subject(s)
Dog Diseases , Toxocara canis , Toxocariasis , Animals , Dogs , Lectins, C-Type , Lipidomics , Liver , Lysophosphatidylcholines , NF-kappa B , Receptors, Antigen, B-Cell , Toxocara canis/physiology
16.
Parasit Vectors ; 15(1): 279, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-35927758

ABSTRACT

BACKGROUND: Toxocara canis is a cosmopolitan parasite with a significant adverse impact on the health of humans and animals. The spleen is a major immune organ that plays essential roles in protecting the host against various infections. However, its role in T. canis infection has not received much attention. METHODS: We performed sequencing-based transcriptome profiling of long noncoding RNA (lncRNA) and messenger RNA (mRNA) expression in the spleen of Beagle puppies at 24 h post-infection (hpi), 96 hpi and 36 days post-infection (dpi). Deep sequencing of RNAs isolated from the spleen of six puppies (three infected and three control) at each time point after infection was conducted. RESULTS: Our analysis revealed 614 differentially expressed (DE) lncRNAs and 262 DEmRNAs at 24 hpi; 726 DElncRNAs and 878 DEmRNAs at 96 hpi; and 686 DElncRNAs and 504 DEmRNAs at 36 dpi. Of those, 35 DElncRNA transcripts and 11 DEmRNAs were detected at all three time points post-infection. Many DE genes were enriched in immune response, such as ifit1, ifit2 and rorc. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that some genes (e.g. prkx and tnfrsf11a) were involved in the T cell receptor signaling pathway, calcium signaling pathway, Ras signaling pathway and NF-κB signaling pathway. CONCLUSIONS: The findings of this study show marked alterations in the expression profiles of spleen lncRNAs and mRNAs, with possible implications in the pathophysiology of toxocariasis.


Subject(s)
RNA, Long Noncoding , Toxocara canis , Animals , Dogs , Gene Expression Profiling , Gene Regulatory Networks , Humans , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Analysis, RNA , Spleen/metabolism , Toxocara canis/genetics , Toxocara canis/metabolism
17.
Animals (Basel) ; 12(22)2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36428308

ABSTRACT

Toxocariasis, mainly caused by Toxocara canis, and to a lesser extent, Toxocara cati, is a neglected parasitic zoonosis. The mechanisms that underlie the changes in lipid metabolism of T. canis infection in Beagle dogs' lungs remain unclear. Lipidomics is a rapidly emerging approach that enables the global profiling of lipid composition by mass spectrometry. In this study, we performed a non-targeted lipidomic analysis of the lungs of Beagle dogs infected with the roundworm T. canis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1197 lipid species were identified, of which 63, 88, and 157 lipid species were significantly altered at 24 h post-infection (hpi), 96 hpi, and 36 days post-infection (dpi), respectively. This global lipidomic profiling identified infection-specific lipid signatures for lung toxocariasis, and represented a comprehensive comparison between the lipid composition of dogs' lungs in the presence and absence of T. canis infection. The potential roles of the identified lipid species in the pathogenesis of T. canis are discussed, which has important implications for better understanding the interaction mechanism between T. canis and the host lung.

18.
Parasit Vectors ; 15(1): 490, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36572911

ABSTRACT

BACKGROUND: Increasing evidence has shown that non-coding RNA (ncRNA) molecules play fundamental roles in cells, and many are stable in body fluids as circulating RNAs. Study on these ncRNAs will provide insights into toxoplasmosis pathophysiology and/or help reveal diagnostic biomarkers. METHODS: We performed a high-throughput RNA-Seq study to comprehensively profile the microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs) in rabbit serum and urine after infection with Toxoplasma gondii oocysts during the whole infection process. RESULTS: Total RNA extracted from serum and urine samples of acutely infected [8 days post-infection (DPI)], chronically infected (70 DPI) and uninfected rabbits were subjected to genome-wide small RNA sequencing. We identified 2089 miRNAs and 2224 novel piRNAs from the rabbit sera associated with T. gondii infection. Meanwhile, a total of 518 miRNAs and 4182 novel piRNAs were identified in the rabbit urine associated with T. gondii infection. Of these identified small ncRNAs, 1178 and 1317 serum miRNAs and 311 and 294 urine miRNAs were identified as differentially expressed (DE) miRNAs in the acute and chronic stages of infections, respectively. A total of 1748 and 1814 serum piRNAs and 597 and 708 urine piRNAs were found in the acute and chronic infection stages, respectively. Of these dysregulated ncRNAs, a total of 88 common DE miRNAs and 120 DE novel piRNAs were found in both serum and urine samples of infected rabbits. CONCLUSIONS: These findings provide valuable data for revealing the physiology of herbivore toxoplasmosis caused by oocyst infection. Circulating ncRNAs identified in this study are potential novel diagnostic biomarkers for the detection/diagnosis of toxoplasmosis in herbivorous animals.


Subject(s)
Body Fluids , Lagomorpha , MicroRNAs , Toxoplasma , Toxoplasmosis , Animals , Rabbits , MicroRNAs/genetics , Toxoplasma/genetics , Piwi-Interacting RNA , Oocysts/genetics , Biomarkers
19.
Animals (Basel) ; 12(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35454240

ABSTRACT

Enterocytozoon bieneusi is a fungus-like protist that can cause malabsorption and diarrhea in sheep, other animals, and humans, threatening the development of animal husbandry and public health. To date, there are no data about the prevalence and genotypes of E. bieneusi in sheep in Shanxi Province, North China. In this study, 492 fecal samples were collected from sheep in three representative counties in northern, central, and southern Shanxi Province. Nested PCR amplification was performed to detect the prevalence and identify the genotypes of E. bieneusi based on the internal transcribed spacer (ITS) region of the rRNA gene. Overall, 168 of 492 examined samples were E. bieneusi-positive, with a prevalence of 34.2% (168/492). Significant differences in the prevalence of E. bieneusi were observed among the three sampled regions (χ2 = 95.859, df = 2, p < 0.001), but the differences in E. bieneusi prevalence were not statistically significant between different genders and age groups (p > 0.05). Sequence analysis showed that four known genotypes (BEB6, COS-I, CHS7, and CHC8) and one novel genotype (named SY-1) were identified. BEB6 was the prevalent genotype found within the three counties. Phylogenetic analysis revealed that the five genotypes observed in this study belong to Group 2. The present study reported the presence and genotypes of E. bieneusi infection in sheep in Shanxi Province for the first time, which enriches the knowledge of the genetic diversity of E. bieneusi and provides baseline data for the prevention and control of E. bieneusi infection in animals and humans.

20.
Front Vet Sci ; 9: 933691, 2022.
Article in English | MEDLINE | ID: mdl-35909693

ABSTRACT

Enterocytozoon bieneusi is a common opportunistic intestinal pathogen that can cause acute diarrhea in immunosuppressed humans and animals. Though E. bieneusi has been widely detected in pigs around the world, little is known of its prevalence and genotype distribution in pigs in Shanxi province, north China. In this study, a total of 362 fecal samples were collected from pigs in three representative counties in north, south, and central Shanxi province, China. The prevalence and genotypes of E. bieneusi were investigated by nested PCR amplification of the ribosomal internal transcribed spacer (ITS) region of the ribosomal RNA (rRNA) gene. Overall, the prevalence of E. bieneusi in pigs in Shanxi province was 54.70% (198/362). Statistical analysis showed the difference in prevalence was statistically significant between regions (χ2 = 41.94, df = 2, P < 0.001) and ages (χ2 = 80.37, df = 1, P < 0.001). In addition, 16 genotypes of E. bieneusi were identified in this study by sequence analysis of the ITS region, including 15 known genotypes (EbpC, EbpA, EbpB, pigEb4, PigEBITS5, I, Henan-I, G, WildBoar 7, SH10, EbpD, CHC5, PigSpEb1, PigSpEb2, and CHG19) and one novel genotype (designated as PigSX-1). Phylogenetic analysis revealed that 14 known genotypes and the novel genotype were clustered into Group 1, whereas genotype I belonged to Group 2. To the best of our knowledge, this is the first report on the prevalence and genotypes of E. bieneusi in pigs in Shanxi province. These findings enrich the genetic diversity of E. bieneusi and provide the baseline data for the prevention and control of E. bieneusi in pigs in the study regions.

SELECTION OF CITATIONS
SEARCH DETAIL