Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.915
Filter
Add more filters

Publication year range
1.
Cell ; 170(2): 367-381.e20, 2017 Jul 13.
Article in English | MEDLINE | ID: mdl-28709003

ABSTRACT

High-order chromatin structure plays important roles in gene expression regulation. Knowledge of the dynamics of 3D chromatin structures during mammalian embryo development remains limited. We report the 3D chromatin architecture of mouse gametes and early embryos using an optimized Hi-C method with low-cell samples. We find that mature oocytes at the metaphase II stage do not have topologically associated domains (TADs). In sperm, extra-long-range interactions (>4 Mb) and interchromosomal interactions occur frequently. The high-order structures of both the paternal and maternal genomes in zygotes and two-cell embryos are obscure but are gradually re-established through development. The establishment of the TAD structure requires DNA replication but not zygotic genome activation. Furthermore, unmethylated CpGs are enriched in A compartment, and methylation levels are decreased to a greater extent in A compartment than in B compartment in embryos. In summary, the global reprogramming of chromatin architecture occurs during early mammalian development.


Subject(s)
Chromatin/metabolism , Embryo, Mammalian/metabolism , Embryonic Development , Animals , Chromatin/chemistry , CpG Islands , DNA Methylation , DNA Replication , Embryo, Mammalian/chemistry , Epigenesis, Genetic , Female , Germ Cells/metabolism , Male , Metaphase , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Oocytes/cytology , Spermatozoa/metabolism , Zygote/metabolism
2.
Mol Cell ; 84(9): 1637-1650.e10, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38604171

ABSTRACT

Long interspersed element-1 (LINE-1 or L1) comprises 17% of the human genome, continuously generates genetic variations, and causes disease in certain cases. However, the regulation and function of L1 remain poorly understood. Here, we uncover that L1 can enrich RNA polymerase IIs (RNA Pol IIs), express L1 chimeric transcripts, and create contact domain boundaries in human cells. This impact of L1 is restricted by a nuclear matrix protein scaffold attachment factor B (SAFB) that recognizes transcriptionally active L1s by binding L1 transcripts to inhibit RNA Pol II enrichment. Acute inhibition of RNA Pol II transcription abolishes the domain boundaries associated with L1 chimeric transcripts, indicating a transcription-dependent mechanism. Deleting L1 impairs domain boundary formation, and L1 insertions during evolution have introduced species-specific domain boundaries. Our data show that L1 can create RNA Pol II-enriched regions that alter genome organization and that SAFB regulates L1 and RNA Pol II activity to preserve gene regulation.


Subject(s)
Long Interspersed Nucleotide Elements , Matrix Attachment Region Binding Proteins , RNA Polymerase II , Receptors, Estrogen , Transcription, Genetic , Humans , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Long Interspersed Nucleotide Elements/genetics , Matrix Attachment Region Binding Proteins/metabolism , Matrix Attachment Region Binding Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Matrix-Associated Proteins/genetics , Gene Expression Regulation , Protein Binding , HEK293 Cells , Genome, Human
3.
Nat Rev Mol Cell Biol ; 20(9): 535-550, 2019 09.
Article in English | MEDLINE | ID: mdl-31197269

ABSTRACT

In eukaryotes, the genome does not exist as a linear molecule but instead is hierarchically packaged inside the nucleus. This complex genome organization includes multiscale structural units of chromosome territories, compartments, topologically associating domains, which are often demarcated by architectural proteins such as CTCF and cohesin, and chromatin loops. The 3D organization of chromatin modulates biological processes such as transcription, DNA replication, cell division and meiosis, which are crucial for cell differentiation and animal development. In this Review, we discuss recent progress in our understanding of the general principles of chromatin folding, its regulation and its functions in mammalian development. Specifically, we discuss the dynamics of 3D chromatin and genome organization during gametogenesis, embryonic development, lineage commitment and stem cell differentiation, and focus on the functions of chromatin architecture in transcription regulation. Finally, we discuss the role of 3D genome alterations in the aetiology of developmental disorders and human diseases.


Subject(s)
Cell Differentiation , Chromatin/metabolism , Gene Expression Regulation , Genome, Human , Stem Cells/metabolism , Transcription, Genetic , Animals , Chromatin/genetics , Humans
4.
Cell ; 164(3): 460-75, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26824657

ABSTRACT

Neurogenesis is initiated by the transient expression of the highly conserved proneural proteins, bHLH transcriptional regulators. Here, we discover a conserved post-translational switch governing the duration of proneural protein activity that is required for proper neuronal development. Phosphorylation of a single Serine at the same position in Scute and Atonal proneural proteins governs the transition from active to inactive forms by regulating DNA binding. The equivalent Neurogenin2 Threonine also regulates DNA binding and proneural activity in the developing mammalian neocortex. Using genome editing in Drosophila, we show that Atonal outlives its mRNA but is inactivated by phosphorylation. Inhibiting the phosphorylation of the conserved proneural Serine causes quantitative changes in expression dynamics and target gene expression resulting in neuronal number and fate defects. Strikingly, even a subtle change from Serine to Threonine appears to shift the duration of Atonal activity in vivo, resulting in neuronal fate defects.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/chemistry , Basic Helix-Loop-Helix Transcription Factors/genetics , Neurogenesis , Amino Acid Sequence , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Drosophila , Drosophila Proteins , Eye/growth & development , Eye/ultrastructure , Imaginal Discs/metabolism , Mice , Models, Molecular , Molecular Sequence Data , Nerve Tissue Proteins/metabolism , Phosphorylation , Retina/growth & development , Sequence Alignment
5.
Mol Cell ; 83(10): 1542-1544, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37207620

ABSTRACT

Three papers, Kawasaki et al.1 in this issue and Chen et al.2 and Li et al.3 in the previous issue of Molecular Cell, reveal regulatory roles for multiway chromatin interactions mediated by structural elements in Drosophila and human genomes.


Subject(s)
Chromatin , Enhancer Elements, Genetic , Animals , Humans , Promoter Regions, Genetic , Chromatin/genetics , Drosophila/genetics
6.
Mol Cell ; 82(6): 1169-1185.e7, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35202573

ABSTRACT

Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.


Subject(s)
Chromatin , Drosophila Proteins , CpG Islands , Drosophila Proteins/metabolism , Histone Code , Polycomb-Group Proteins/genetics , Polycomb-Group Proteins/metabolism , Promoter Regions, Genetic
7.
Nature ; 616(7956): 300-305, 2023 04.
Article in English | MEDLINE | ID: mdl-36927804

ABSTRACT

Achieving food-system sustainability is a multidimensional challenge. In China, a doubling of crop production since 1990 has compromised other dimensions of sustainability1,2. Although the country is promoting various interventions to enhance production efficiency and reduce environmental impacts3, there is little understanding of whether crop switching can achieve more sustainable cropping systems and whether coordinated action is needed to avoid tradeoffs. Here we combine high-resolution data on crop-specific yields, harvested areas, environmental footprints and farmer incomes to first quantify the current state of crop-production sustainability. Under varying levels of inter-ministerial and central coordination, we perform spatial optimizations that redistribute crops to meet a suite of agricultural sustainable development targets. With a siloed approach-in which each government ministry seeks to improve a single sustainability outcome in isolation-crop switching could realize large individual benefits but produce tradeoffs for other dimensions and between regions. In cases of central coordination-in which tradeoffs are prevented-we find marked co-benefits for environmental-impact reductions (blue water (-4.5% to -18.5%), green water (-4.4% to -9.5%), greenhouse gases (GHGs) (-1.7% to -7.7%), fertilizers (-5.2% to -10.9%), pesticides (-4.3% to -10.8%)) and increased farmer incomes (+2.9% to +7.5%). These outcomes of centrally coordinated crop switching can contribute substantially (23-40% across dimensions) towards China's 2030 agricultural sustainable development targets and potentially produce global resource savings. This integrated approach can inform feasible targeted agricultural interventions that achieve sustainability co-benefits across several dimensions.


Subject(s)
Crop Production , Environment , Farmers , Income , Sustainable Development , China , Crop Production/economics , Crop Production/methods , Fertilizers/analysis , Sustainable Development/economics , Sustainable Development/trends , Pesticides , Greenhouse Gases
8.
Nature ; 620(7976): 1047-1053, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37459895

ABSTRACT

Zygotic genome activation (ZGA) activates the quiescent genome to enable the maternal-to-zygotic transition1,2. However, the identity of transcription factors that underlie mammalian ZGA in vivo remains elusive. Here we show that OBOX, a PRD-like homeobox domain transcription factor family (OBOX1-OBOX8)3-5, are key regulators of mouse ZGA. Mice deficient for maternally transcribed Obox1/2/5/7 and zygotically expressed Obox3/4 had a two-cell to four-cell arrest, accompanied by impaired ZGA. The Obox knockout defects could be rescued by restoring either maternal and zygotic OBOX, which suggests that maternal and zygotic OBOX redundantly support embryonic development. Chromatin-binding analysis showed that Obox knockout preferentially affected OBOX-binding targets. Mechanistically, OBOX facilitated the 'preconfiguration' of RNA polymerase II, as the polymerase relocated from the initial one-cell binding targets to ZGA gene promoters and distal enhancers. Impaired polymerase II preconfiguration in Obox mutants was accompanied by defective ZGA and chromatin accessibility transition, as well as aberrant activation of one-cell polymerase II targets. Finally, ectopic expression of OBOX activated ZGA genes and MERVL repeats in mouse embryonic stem cells. These data thus demonstrate that OBOX regulates mouse ZGA and early embryogenesis.


Subject(s)
Embryonic Development , Gene Expression Regulation, Developmental , Genome , Homeodomain Proteins , Transcription Factors , Zygote , Animals , Mice , Chromatin/genetics , Chromatin/metabolism , Embryonic Development/genetics , Enhancer Elements, Genetic/genetics , Genome/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mouse Embryonic Stem Cells/metabolism , Mutation , Promoter Regions, Genetic/genetics , RNA Polymerase II/metabolism , Transcription Factors/deficiency , Transcription Factors/genetics , Transcription Factors/metabolism , Zygote/metabolism
9.
Mol Cell ; 81(7): 1425-1438.e10, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33662272

ABSTRACT

Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.


Subject(s)
DNA-Binding Proteins/metabolism , Hippocampus/metabolism , Long-Term Synaptic Depression , Peptide Chain Elongation, Translational , Peptide Elongation Factor 2/metabolism , Receptors, Metabotropic Glutamate/biosynthesis , Animals , DNA-Binding Proteins/genetics , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Knockout , Peptide Elongation Factor 2/genetics , Phosphorylation , Receptors, Metabotropic Glutamate/genetics
10.
Immunity ; 51(2): 272-284.e7, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31399282

ABSTRACT

Macrophage polarization is accompanied by drastic changes in L-arginine metabolism. Two L-arginine catalytic enzymes, iNOS and arginase 1, are well-characterized hallmark molecules of classically and alternatively activated macrophages, respectively. The third metabolic fate of L-arginine is the generation of creatine that acts as a key source of cellular energy reserve, yet little is known about the role of creatine in the immune system. Here, genetic, genomic, metabolic, and immunological analyses revealed that creatine reprogrammed macrophage polarization by suppressing M(interferon-γ [IFN-γ]) yet promoting M(interleukin-4 [IL-4]) effector functions. Mechanistically, creatine inhibited the induction of immune effector molecules, including iNOS, by suppressing IFN-γ-JAK-STAT1 transcription-factor signaling while supporting IL-4-STAT6-activated arginase 1 expression by promoting chromatin remodeling. Depletion of intracellular creatine by ablation of the creatine transporter Slc6a8 altered macrophage-mediated immune responses in vivo. These results uncover a previously uncharacterized role for creatine in macrophage polarization by modulating cellular responses to cytokines such as IFN-γ and IL-4.


Subject(s)
Arginine/metabolism , Creatine/metabolism , Liver Cirrhosis/metabolism , Macrophages/physiology , Membrane Transport Proteins/metabolism , Animals , Cell Differentiation , Cells, Cultured , Cellular Reprogramming , Humans , Immunity, Cellular , Interferon-gamma/metabolism , Liver Cirrhosis/chemically induced , Membrane Transport Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Signal Transduction , Tetrachloroethylene
11.
Cell ; 153(5): 1134-48, 2013 May 23.
Article in English | MEDLINE | ID: mdl-23664764

ABSTRACT

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Subject(s)
DNA Methylation , Embryonic Stem Cells/metabolism , Epigenomics , Gene Expression Regulation, Developmental , Animals , Cell Differentiation , Chromatin/metabolism , CpG Islands , Embryonic Stem Cells/cytology , Histones/metabolism , Humans , Methylation , Neoplasms/genetics , Promoter Regions, Genetic , Zebrafish/embryology
12.
Mol Cell ; 77(4): 748-760.e9, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31785928

ABSTRACT

Mutations affecting exon 9 of the CALR gene lead to the generation of a C-terminally modified calreticulin (CALR) protein that lacks the KDEL endoplasmic reticulum (ER) retention signal and consequently mislocalizes outside of the ER where it activates the thrombopoietin receptor in a cell-autonomous fashion, thus driving myeloproliferative diseases. Here, we used the retention using selective hooks (RUSH) assay to monitor the trafficking of CALR. We found that exon-9-mutated CALR was released from cells in response to the biotin-mediated detachment from its ER-localized hook, in vitro and in vivo. Cellular CALR release was confirmed in suitable mouse models bearing exon-9-mutated hematopoietic systems or tumors. Extracellular CALR mediated immunomodulatory effects and inhibited the phagocytosis of dying cancer cells by dendritic cells (DC), thereby suppressing antineoplastic immune responses elicited by chemotherapeutic agents or by PD-1 blockade. Altogether, our results demonstrate paracrine immunosuppressive effects for exon-9-mutated CALR.


Subject(s)
Calreticulin/genetics , Immune Tolerance/genetics , Mutation , Neoplasms/genetics , Neoplasms/immunology , Animals , Calreticulin/metabolism , Cell Line, Tumor , Humans , Mice , Mice, Inbred C57BL , Phagocytosis
13.
Mol Cell ; 79(2): 234-250.e9, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32579944

ABSTRACT

Somatic cell nuclear transfer (SCNT) can reprogram a somatic nucleus to a totipotent state. However, the re-organization of 3D chromatin structure in this process remains poorly understood. Using low-input Hi-C, we revealed that, during SCNT, the transferred nucleus first enters a mitotic-like state (premature chromatin condensation). Unlike fertilized embryos, SCNT embryos show stronger topologically associating domains (TADs) at the 1-cell stage. TADs become weaker at the 2-cell stage, followed by gradual consolidation. Compartments A/B are markedly weak in 1-cell SCNT embryos and become increasingly strengthened afterward. By the 8-cell stage, somatic chromatin architecture is largely reset to embryonic patterns. Unexpectedly, we found cohesin represses minor zygotic genome activation (ZGA) genes (2-cell-specific genes) in pluripotent and differentiated cells, and pre-depleting cohesin in donor cells facilitates minor ZGA and SCNT. These data reveal multi-step reprogramming of 3D chromatin architecture during SCNT and support dual roles of cohesin in TAD formation and minor ZGA repression.


Subject(s)
Cell Cycle Proteins/physiology , Chromatin/physiology , Chromosomal Proteins, Non-Histone/physiology , Nuclear Transfer Techniques , Zygote/physiology , Animals , Cell Line , Cell Nucleus , Chromatin Assembly and Disassembly , Computational Biology/methods , Datasets as Topic , Embryonic Development , Female , Male , Mice , Mice, Inbred C57BL , Cohesins
14.
Mol Cell ; 77(4): 825-839.e7, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31837995

ABSTRACT

In mammals, chromatin organization undergoes drastic reorganization during oocyte development. However, the dynamics of three-dimensional chromatin structure in this process is poorly characterized. Using low-input Hi-C (genome-wide chromatin conformation capture), we found that a unique chromatin organization gradually appears during mouse oocyte growth. Oocytes at late stages show self-interacting, cohesin-independent compartmental domains marked by H3K27me3, therefore termed Polycomb-associating domains (PADs). PADs and inter-PAD (iPAD) regions form compartment-like structures with strong inter-domain interactions among nearby PADs. PADs disassemble upon meiotic resumption from diplotene arrest but briefly reappear on the maternal genome after fertilization. Upon maternal depletion of Eed, PADs are largely intact in oocytes, but their reestablishment after fertilization is compromised. By contrast, depletion of Polycomb repressive complex 1 (PRC1) proteins attenuates PADs in oocytes, which is associated with substantial gene de-repression in PADs. These data reveal a critical role of Polycomb in regulating chromatin architecture during mammalian oocyte growth and early development.


Subject(s)
Chromatin/chemistry , Oocytes/growth & development , Oogenesis/genetics , Polycomb-Group Proteins/physiology , Animals , Blastocyst/chemistry , Cell Cycle Proteins/physiology , Chromosomal Proteins, Non-Histone/physiology , Embryo, Mammalian/chemistry , Gene Silencing , Histone Code , Mice , Oocytes/chemistry , Transcription, Genetic , Cohesins
15.
Trends Biochem Sci ; 48(8): 673-688, 2023 08.
Article in English | MEDLINE | ID: mdl-37221124

ABSTRACT

Spatiotemporal regulation of cell type-specific gene expression is essential to convert a zygote into a complex organism that contains hundreds of distinct cell types. A class of cis-regulatory elements called enhancers, which have the potential to enhance target gene transcription, are crucial for precise gene expression programs during development. Following decades of research, many enhancers have been discovered and how enhancers become activated has been extensively studied. However, the mechanisms underlying enhancer silencing are less well understood. We review current understanding of enhancer decommissioning and dememorization, both of which enable enhancer silencing. We highlight recent progress from genome-wide perspectives that have revealed the life cycle of enhancers and how its dynamic regulation underlies cell fate transition, development, cell regeneration, and epigenetic reprogramming.


Subject(s)
Enhancer Elements, Genetic , Life Cycle Stages , Animals , Cell Differentiation
16.
Cell ; 148(4): 816-31, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22341451

ABSTRACT

Differential methylation of the two parental genomes in placental mammals is essential for genomic imprinting and embryogenesis. To systematically study this epigenetic process, we have generated a base-resolution, allele-specific DNA methylation (ASM) map in the mouse genome. We find parent-of-origin dependent (imprinted) ASM at 1,952 CG dinucleotides. These imprinted CGs form 55 discrete clusters including virtually all known germline differentially methylated regions (DMRs) and 23 previously unknown DMRs, with some occurring at microRNA genes. We also identify sequence-dependent ASM at 131,765 CGs. Interestingly, methylation at these sites exhibits a strong dependence on the immediate adjacent bases, allowing us to define a conserved sequence preference for the mammalian DNA methylation machinery. Finally, we report a surprising presence of non-CG methylation in the adult mouse brain, with some showing evidence of imprinting. Our results provide a resource for understanding the mechanisms of imprinting and allele-specific gene expression in mammalian cells.


Subject(s)
Cerebral Cortex/metabolism , DNA Methylation , Genomic Imprinting , Alleles , Animals , CpG Islands , Female , Genome-Wide Association Study , Male , Mice , Mice, 129 Strain
17.
Cell ; 148(5): 873-85, 2012 Mar 02.
Article in English | MEDLINE | ID: mdl-22385957

ABSTRACT

Tumor heterogeneity presents a challenge for inferring clonal evolution and driver gene identification. Here, we describe a method for analyzing the cancer genome at a single-cell nucleotide level. To perform our analyses, we first devised and validated a high-throughput whole-genome single-cell sequencing method using two lymphoblastoid cell line single cells. We then carried out whole-exome single-cell sequencing of 90 cells from a JAK2-negative myeloproliferative neoplasm patient. The sequencing data from 58 cells passed our quality control criteria, and these data indicated that this neoplasm represented a monoclonal evolution. We further identified essential thrombocythemia (ET)-related candidate mutations such as SESN2 and NTRK1, which may be involved in neoplasm progression. This pilot study allowed the initial characterization of the disease-related genetic architecture at the single-cell nucleotide level. Further, we established a single-cell sequencing method that opens the way for detailed analyses of a variety of tumor types, including those with high genetic complex between patients.


Subject(s)
Clonal Evolution , Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , Janus Kinase 2/genetics , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Single-Cell Analysis/methods , Thrombocythemia, Essential/genetics , Exome , Genome, Human , Humans , Male , Middle Aged , Mutation
18.
Nature ; 590(7847): 624-629, 2021 02.
Article in English | MEDLINE | ID: mdl-33461211

ABSTRACT

In the type III CRISPR-Cas immune response of prokaryotes, infection triggers the production of cyclic oligoadenylates that bind and activate proteins that contain a CARF domain1,2. Many type III loci are associated with proteins in which the CRISPR-associated Rossman fold (CARF) domain is fused to a restriction  endonuclease-like domain3,4. However, with the exception of the well-characterized Csm6 and Csx1 ribonucleases5,6, whether and how these inducible effectors provide defence is not known. Here we investigated a type III CRISPR accessory protein, which we name cyclic-oligoadenylate-activated single-stranded ribonuclease and single-stranded deoxyribonuclease 1 (Card1). Card1 forms a symmetrical dimer that has a large central cavity between its CRISPR-associated Rossmann fold and restriction endonuclease domains that binds cyclic tetra-adenylate. The binding of ligand results in a conformational change comprising the rotation of individual monomers relative to each other to form a more compact dimeric scaffold, in which a manganese cation coordinates the catalytic residues and activates the cleavage of single-stranded-but not double-stranded-nucleic acids (both DNA and RNA). In vivo, activation of Card1 induces dormancy of the infected hosts to provide immunity against phage infection and plasmids. Our results highlight the diversity of strategies used in CRISPR systems to provide immunity.


Subject(s)
Adenine Nucleotides/metabolism , CRISPR-Cas Systems/immunology , DNA, Single-Stranded/metabolism , Deoxyribonucleases/metabolism , Endoribonucleases/metabolism , Oligoribonucleotides/metabolism , RNA/metabolism , Staphylococcus/enzymology , Staphylococcus/immunology , Adenine Nucleotides/immunology , Adenosine Triphosphate/metabolism , Bacteriophages/immunology , Bacteriophages/physiology , Biocatalysis , Catalytic Domain , Deoxyribonucleases/chemistry , Deoxyribonucleases/genetics , Endoribonucleases/chemistry , Endoribonucleases/genetics , Enzyme Activation , Ligands , Manganese/chemistry , Manganese/metabolism , Models, Molecular , Oligoribonucleotides/immunology , Plasmids/genetics , Plasmids/metabolism , Protein Multimerization , Rotation , Staphylococcus/growth & development , Staphylococcus/virology , Substrate Specificity
19.
Nature ; 592(7852): 144-149, 2021 04.
Article in English | MEDLINE | ID: mdl-33731927

ABSTRACT

The accurate segregation of chromosomes during meiosis-which is critical for genome stability across sexual cycles-relies on homologous recombination initiated by DNA double-strand breaks (DSBs) made by the Spo11 protein1,2. The formation of DSBs is regulated and tied to the elaboration of large-scale chromosome structures3-5, but the protein assemblies that execute and control DNA breakage are poorly understood. Here we address this through the molecular characterization of Saccharomyces cerevisiae RMM (Rec114, Mei4 and Mer2) proteins-essential, conserved components of the DSB machinery2. Each subcomplex of Rec114-Mei4 (a 2:1 heterotrimer) or Mer2 (a coiled-coil-containing homotetramer) is monodispersed in solution, but they independently condense with DNA into reversible nucleoprotein clusters that share properties with phase-separated systems. Multivalent interactions drive this condensation. Mutations that weaken protein-DNA interactions strongly disrupt both condensate formation and DSBs in vivo, and thus these processes are highly correlated. In vitro, condensates fuse into mixed RMM clusters that further recruit Spo11 complexes. Our data show how the DSB machinery self-assembles on chromosome axes to create centres of DSB activity. We propose that multilayered control of Spo11 arises from the recruitment of regulatory components and modulation of the biophysical properties of the condensates.


Subject(s)
DNA Breaks, Double-Stranded , DNA, Fungal/metabolism , Meiosis , Nuclear Proteins/metabolism , Nucleoproteins/metabolism , Recombinases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , DNA, Fungal/chemistry , Endodeoxyribonucleases/metabolism , Homologous Recombination , Nuclear Proteins/chemistry , Nucleoproteins/chemistry , Protein Binding , Protein Subunits/chemistry , Protein Subunits/metabolism , Recombinases/chemistry , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry
20.
Mol Cell ; 73(3): 547-561.e6, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30735655

ABSTRACT

Chromatin organization undergoes drastic reconfiguration during gametogenesis. However, the molecular reprogramming of three-dimensional chromatin structure in this process remains poorly understood for mammals, including primates. Here, we examined three-dimensional chromatin architecture during spermatogenesis in rhesus monkey using low-input Hi-C. Interestingly, we found that topologically associating domains (TADs) undergo dissolution and reestablishment in spermatogenesis. Strikingly, pachytene spermatocytes, where synapsis occurs, are strongly depleted for TADs despite their active transcription state but uniquely show highly refined local compartments that alternate between transcribing and non-transcribing regions (refined-A/B). Importantly, such chromatin organization is conserved in mouse, where it remains largely intact upon transcription inhibition. Instead, it is attenuated in mutant spermatocytes, where the synaptonemal complex failed to be established. Intriguingly, this is accompanied by the restoration of TADs, suggesting that the synaptonemal complex may restrict TADs and promote local compartments. Thus, these data revealed extensive reprogramming of higher-order meiotic chromatin architecture during mammalian gametogenesis.


Subject(s)
Cellular Reprogramming , Chromatin Assembly and Disassembly , Chromatin/metabolism , Meiosis , Spermatogenesis , Spermatozoa/metabolism , Animals , Chromatin/chemistry , Chromatin/genetics , Gene Expression Regulation, Developmental , HCT116 Cells , Humans , Macaca mulatta , Male , Mice, Inbred C57BL , Mice, Knockout , Nucleic Acid Conformation , Pachytene Stage , Protein Conformation , Structure-Activity Relationship , Time Factors , Transcription, Genetic , X Chromosome Inactivation
SELECTION OF CITATIONS
SEARCH DETAIL