Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Acta Pharmacol Sin ; 36(12): 1426-36, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26592517

ABSTRACT

AIM: Carvacrol (2-methyl-5-isopropylphenol), a phenolic monoterpene in the essential oils of the genera Origanum and Thymus, has been shown to exert a variety of therapeutic effects. Here we examined whether carvacrol protected neuroblastoma SH-SY5Y cells against Fe(2+)-induced apoptosis and explored the underlying mechanisms. METHODS: Neuroblastoma SH-SY5Y cells were incubated with Fe(2+) for 24 h, and the cell viability was assessed with CCK-8 assay. TUNEL assay and flow cytometric analysis were performed to evaluate cell apoptosis. The mRNA levels of pro-inflammatory cytokines and NF-κB p65 were determined using qPCR. The expression of relevant proteins was determined using Western blot analysis or immunofluorescence staining. RESULTS: Treatment of SH-SY5Y cells with Fe(2+) (50-200 µmol/L) dose-dependently decreased the cell viability, which was significantly attenuated by pretreatment with carvacrol (164 and 333 µmol/L). Treatment with Fe(2+) increased the Bax level and caspase-3 activity, and decreased the Bcl-2 level, resulting in cell apoptosis. Furthermore, treatment with Fe(2+) significantly increased the gene expression of IL-1ß, IL-6 and TNF-α, and induced the nuclear translocation of NF-κB. Treatment with Fe(2+) also significantly increased the phosphorylation of p38, ERK, JNK and IKK in the cells. Pretreatment with carvacrol significantly inhibited Fe(2+)-induced activation of NF-κB, expression of the pro-inflammatory cytokines, and cell apoptosis. Moreover, pretreatment with carvacrol inhibited Fe(2+)-induced phosphorylation of JNK and IKK, but not p38 and ERK in the cells. CONCLUSION: Carvacrol protects neuroblastoma SH-SY5Y cells against Fe(2+)-induced apoptosis, which may result from suppressing the MAPK/JNK-NF-κB signaling pathways.


Subject(s)
Apoptosis/drug effects , Iron/toxicity , MAP Kinase Kinase 4/immunology , Mitogen-Activated Protein Kinases/immunology , Monoterpenes/therapeutic use , NF-kappa B/immunology , Neuroprotective Agents/therapeutic use , Cations, Divalent/toxicity , Cell Line, Tumor , Cymenes , Humans , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL