Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
PLoS Genet ; 18(6): e1010280, 2022 06.
Article in English | MEDLINE | ID: mdl-35737710

ABSTRACT

Aedes albopictus is one of the most invasive insect species in the world and an effective vector for many important arboviruses. We reported previously that Ae. albopictus Nix (AalNix) is the male-determining factor of this species. However, whether AalNix alone is sufficient to initiate male development is unknown. Transgenic lines that express each of the three AalNix isoforms from the native promoter were obtained using piggyBac transformation. We verified the stable expression of AalNix isoforms in the transgenic lines and confirm that one isoform, AalNix3&4, is sufficient to convert females into fertile males (pseudo-males) that are indistinguishable from wild-type males. We also established a stable sex-converted female mosquito strain, AalNix3&4-♂4-pseudo-male. The pseudo-male mosquitoes can fly and mate normally with wild-type female, although their mating competitiveness is lower than wild-type. This work further clarifies the role of AalNix in the sex determination pathway and will facilitate the development of Ae. albopictus control strategies that rely on male-only releases such as SIT and sex-ratio distortion.


Subject(s)
Aedes , Aedes/genetics , Aedes/metabolism , Animals , Animals, Genetically Modified , Female , Introduced Species , Male , Mosquito Vectors/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Reproduction
2.
BMC Biol ; 21(1): 194, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37704988

ABSTRACT

BACKGROUND: Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. RESULTS: A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. CONCLUSIONS: This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.


Subject(s)
Aedes , Dengue Virus , Insecticides , Zika Virus Infection , Zika Virus , Animals , Aedes/genetics , Dengue Virus/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics
3.
J Lipid Res ; 63(9): 100251, 2022 09.
Article in English | MEDLINE | ID: mdl-35841948

ABSTRACT

The outer membrane (OM) of Gram-negative bacteria is an evolving antibiotic barrier composed of a glycerophospholipid (GP) inner leaflet and a lipopolysaccharide (LPS) outer leaflet. The two-component regulatory system CrrAB has only recently been reported to confer high-level polymyxin resistance and virulence in Klebsiella pneumoniae. Mutations in crrB have been shown to lead to the modification of the lipid A moiety of LPS through CrrAB activation. However, functions of CrrAB activation in the regulation of other lipids are unclear. Work here demonstrates that CrrAB activation not only stimulates LPS modification but also regulates synthesis of acyl-glycerophosphoglycerols (acyl-PGs), a lipid species with undefined functions and biosynthesis. Among all possible modulators of acyl-PG identified from proteomic data, we found expression of lipid A palmitoyltransferase (PagP) was significantly upregulated in the crrB mutant. Furthermore, comparative lipidomics showed that most of the increasing acyl-PG activated by CrrAB was decreased after pagP knockout with CRISPR-Cas9. These results suggest that PagP also transfers a palmitate chain from GPs to PGs, generating acyl-PGs. Further investigation revealed that PagP mainly regulates the GP contents within the OM, leading to an increased ratio of acyl-PG to PG species and improving OM hydrophobicity, which may contribute to resistance against certain cationic antimicrobial peptides resistance upon LPS modification. Taken together, this work suggests that CrrAB regulates the palmitoylation of PGs and lipid A within the OM through upregulated PagP, which functions together to form an outer membrane barrier critical for bacterial survival.


Subject(s)
Escherichia coli Proteins , Lipoylation , Acyltransferases/metabolism , Anti-Bacterial Agents , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Glycerophosphates , Glycerophospholipids , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/metabolism , Lipid A/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Palmitates/metabolism , Polymyxins/metabolism , Proteomics
4.
Environ Microbiol ; 24(3): 1150-1165, 2022 03.
Article in English | MEDLINE | ID: mdl-34499799

ABSTRACT

Pseudomonas aeruginosa rugose small-colony variants (RSCVs) are frequently isolated from chronic infections, yet, they are rarely reported in environmental isolates. Here, during the comparative genomic analysis of two P. aeruginosa strains isolated from crude oil, we discovered a spontaneous in-frame deletion, wspAΔ280-307 , which led to hyper-biofilm and RSCV phenotypes. WspA is a homologue of methyl-accepting chemotaxis proteins (MCPs) that senses surfaces to regulate biofilm formation by stimulating cyclic-di-guanosine monophosphate (c-di-GMP) synthesis through the Wsp system. However, the methylation sites of WspA have never been identified. In this study, we identified E280 and E294 of WspA as methylation sites. The wspAΔ280-307 mutation enabled the Wsp system to lock into a constitutively active state that is independent of regulation by methylation. The result is an enhanced production of c-di-GMP. Sequence alignment revealed three conserved repeat sequences within the amino acid residues 280-313 (aa280-313) region of WspA homologues, suggesting that a spontaneous deletion within this DNA encoding region was likely a result of intragenic recombination and that similar mutations might occur in several related bacterial genera. Our results provide a plausible explanation for the selection of RSCVs and a mechanism to confer a competitive advantage for P. aeruginosa in a crude-oil environment.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Cyclic GMP/metabolism , Gene Expression Regulation, Bacterial , Mutation , Pseudomonas aeruginosa/metabolism , Signal Transduction/genetics
5.
J Proteome Res ; 19(8): 3340-3351, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32618196

ABSTRACT

Low-molecular weight proteins and peptides (LMWPs, <30 kDa) in human plasma serve as potential biomarkers or drug targets and are endowed with desirable traits for biological and clinical studies. However, the identification of LMWPs from plasma is retarded by high-abundance proteins, high-molecular weight proteins, and lipids. Here, we present a sequential precipitation and delipidation (SPD) method for the efficient enrichment of LMWPs based on methyl-tert-butyl ether/methanol/water systems. The enriched LMWP sample was analyzed by single-shot liquid chromatography-tandem mass spectrometry employing both HCD and EThcD without tryptic digestion, and 725 peptides were identified on average. The LMWP sample was also digested and analyzed using a bottom-up proteomics pipeline, and 289 proteins were identified, of which 129 (44.6%) proteins were less than 30 kDa and lipoprotein-associated proteins were significantly enriched. Additionally, 25 neuropeptides and 19 long noncoding RNA-encoded polypeptides were identified. Taken together, the SPD method shows good sensitivity and reproducibility when compared with other enrichment methods and has great potential for clinical biomarker discovery and application.


Subject(s)
Pharmaceutical Preparations , Proteomics , Humans , Molecular Weight , Peptides , Reproducibility of Results
6.
Article in English | MEDLINE | ID: mdl-32229491

ABSTRACT

Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A ß-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.


Subject(s)
Colistin , Klebsiella pneumoniae , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , Mutation , Proteomics
7.
Nucleic Acids Res ; 45(11): 6837-6847, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28402444

ABSTRACT

Small ribosomal subunits are co-transcriptionally assembled on the nascent precursor rRNA in Saccharomyces cerevisiae. It is unknown how the highly intertwined structure of 60S large ribosomal subunits is initially formed. Here, we affinity purified and analyzed a series of pre-60S particles assembled in vivo on plasmid-encoded pre-rRNA fragments of increasing lengths, revealing a spatiotemporal assembly map for 34 trans-acting assembly factors (AFs), 30 ribosomal proteins and 5S rRNA. The gradual association of AFs and ribosomal proteins with the pre-rRNA fragments strongly supports that the pre-60S is co-transcriptionally, rather than post-transcriptionally, assembled. The internal and external transcribed spacers ITS1, ITS2 and 3΄ ETS in pre-rRNA must be processed in pre-60S. We show that the processing machineries for ITS1 and ITS2 are primarily recruited by the 5΄ and 3΄ halves of pre-27S RNA, respectively. Nevertheless, processing of both ITS1 and ITS2 requires a complete 25S region. The 3΄ ETS plays a minor role in ribosome assembly, but is important for efficient rRNA processing and ribosome maturation. We also identified a distinct pre-60S state occurring before ITS2 processing. Our data reveal the elusive co-transcriptional assembly pathway of large ribosomal subunit.


Subject(s)
RNA, Ribosomal/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , DNA, Ribosomal Spacer/metabolism , Kinetics , Protein Multimerization , RNA, Fungal/metabolism , Transcription, Genetic
8.
Anal Bioanal Chem ; 410(6): 1689-1695, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29327112

ABSTRACT

In this work, fast isoelectric focusing (IEF) was successfully implemented on an open paper fluidic channel for simultaneous concentration and separation of proteins from complex matrix. With this simple device, IEF can be finished in 10 min with a resolution of 0.03 pH units and concentration factor of 10, as estimated by color model proteins by smartphone-based colorimetric detection. Fast detection of albumin from human serum and glycated hemoglobin (HBA1c) from blood cell was demonstrated. In addition, off-line identification of the model proteins from the IEF fractions with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was also shown. This PAD IEF is potentially useful either for point of care test (POCT) or biomarker analysis as a cost-effective sample pretreatment method.


Subject(s)
Glycated Hemoglobin/analysis , Isoelectric Focusing/instrumentation , Lab-On-A-Chip Devices , Point-of-Care Testing , Serum Albumin, Human/analysis , Equipment Design , Glycated Hemoglobin/isolation & purification , Humans , Isoelectric Focusing/economics , Lab-On-A-Chip Devices/economics , Paper , Point-of-Care Testing/economics , Serum Albumin, Human/isolation & purification , Time Factors
9.
J Sep Sci ; 41(9): 2085-2091, 2018 May.
Article in English | MEDLINE | ID: mdl-29370473

ABSTRACT

Isoelectric focusing plays a critical role in the analysis of complex protein samples. Conventionally, isoelectric focusing is implemented with carrier ampholytes in capillary or immobilized pH gradient gel. In this study, we successfully exhibited a carrier ampholyte-free isoelectric focusing on paper-based analytical device. Proof of the concept was visually demonstrated with color model proteins. Experimental results showed that not only a pH gradient was well established along the open paper fluidic channel as confirmed by pH indicator strip, the pH gradient range could also be tuned by the catholyte or anolyte. Furthermore, the isoelectric focusing fractions from the paper channel can be directly cut and recovered into solutions for post analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. This paper-based isoelectric focusing method is fast, cheap, simple and easy to operate, and could potentially be used as a cost-effective protein sample clean-up method for target protein analysis with mass spectrometry.


Subject(s)
Ampholyte Mixtures/chemistry , Isoelectric Focusing , Paper , Proteins/analysis , Ampholyte Mixtures/analysis , Buffers , Chemical Fractionation , Cost-Benefit Analysis , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Mass Spectrometry , Sodium Dodecyl Sulfate
10.
J Lipid Res ; 57(3): 388-97, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26733148

ABSTRACT

Phospholipids (PLs), one of the lipid categories, are not only the primary building blocks of cellular membranes, but also can be split to produce products that function as second messengers in signal transduction and play a pivotal role in numerous cellular processes, including cell growth, survival, and motility. Here, we present an integrated novel method that combines a fast and robust TMS-diazomethane-based phosphate derivatization and isotopic labeling strategy, which enables simultaneous profiling and relative quantification of PLs from biological samples. Our results showed that phosphate methylation allows fast and sensitive identification of the six major PL classes, including their lysophospholipid counterparts, under positive ionization mode. The isotopic labeling of endogenous PLs was achieved by deuterated diazomethane, which was generated through acid-catalyzed hydrogen/deuterium (H/D) exchange and methanolysis of TMS-diazomethane during the process of phosphate derivatization. The measured H/D ratios of unlabeled and labeled PLs, which were mixed in known proportions, indicated that the isotopic labeling strategy is capable of providing relative quantitation with adequate accuracy, reproducibility, and a coefficient of variation of 9.1%, on average. This novel method offers unique advantages over existing approaches and presents a powerful tool for research of PL metabolism and signaling.


Subject(s)
Lysophospholipids/metabolism , Metabolomics/methods , Phospholipids/metabolism , Cell Line, Tumor , Diazomethane/metabolism , Humans , Isotope Labeling , Methylation , Phospholipids/chemistry , Time Factors
11.
Eukaryot Cell ; 14(3): 252-64, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25576482

ABSTRACT

Lipid droplets (LDs) are ubiquitous organelles that serve as a neutral lipid reservoir and a hub for lipid metabolism. Manipulating LD formation, evolution, and mobilization in oleaginous species may lead to the production of fatty acid-derived biofuels and chemicals. However, key factors regulating LD dynamics remain poorly characterized. Here we purified the LDs and identified LD-associated proteins from cells of the lipid-producing yeast Rhodosporidium toruloides cultured under nutrient-rich, nitrogen-limited, and phosphorus-limited conditions. The LD proteome consisted of 226 proteins, many of which are involved in lipid metabolism and LD formation and evolution. Further analysis of our previous comparative transcriptome and proteome data sets indicated that the transcription level of 85 genes and protein abundance of 77 proteins changed under nutrient-limited conditions. Such changes were highly relevant to lipid accumulation and partially confirmed by reverse transcription-quantitative PCR. We demonstrated that the major LD structure protein Ldp1 is an LD marker protein being upregulated in lipid-rich cells. When overexpressed in Saccharomyces cerevisiae, Ldp1 localized on the LD surface and facilitated giant LD formation, suggesting that Ldp1 plays an important role in controlling LD dynamics. Our results significantly advance the understanding of the molecular basis of lipid overproduction and storage in oleaginous yeasts and will be valuable for the development of superior lipid producers.


Subject(s)
Lipid Droplets/metabolism , Proteome/metabolism , Ustilaginales/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Lipid Metabolism , Proteome/genetics , Ustilaginales/genetics
12.
Nucleic Acids Res ; 42(2): 1052-64, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24150943

ABSTRACT

Rhodococcus opacus strain PD630 (R. opacus PD630), is an oleaginous bacterium, and also is one of few prokaryotic organisms that contain lipid droplets (LDs). LD is an important organelle for lipid storage but also intercellular communication regarding energy metabolism, and yet is a poorly understood cellular organelle. To understand the dynamics of LD using a simple model organism, we conducted a series of comprehensive omics studies of R. opacus PD630 including complete genome, transcriptome and proteome analysis. The genome of R. opacus PD630 encodes 8947 genes that are significantly enriched in the lipid transport, synthesis and metabolic, indicating a super ability of carbon source biosynthesis and catabolism. The comparative transcriptome analysis from three culture conditions revealed the landscape of gene-altered expressions responsible for lipid accumulation. The LD proteomes further identified the proteins that mediate lipid synthesis, storage and other biological functions. Integrating these three omics uncovered 177 proteins that may be involved in lipid metabolism and LD dynamics. A LD structure-like protein LPD06283 was further verified to affect the LD morphology. Our omics studies provide not only a first integrated omics study of prokaryotic LD organelle, but also a systematic platform for facilitating further prokaryotic LD research and biofuel development.


Subject(s)
Lipid Metabolism , Rhodococcus/metabolism , Bacterial Proteins/metabolism , Gene Expression , Gene Expression Profiling , Genome, Bacterial , Genomics , Lipids , Organelles/metabolism , Organelles/ultrastructure , Proteomics , Rhodococcus/genetics , Rhodococcus/ultrastructure , Triglycerides/biosynthesis , Triglycerides/metabolism
13.
J Proteome Res ; 14(8): 3390-402, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26147661

ABSTRACT

One of the major challenges in prostate cancer therapy remains the development of effective treatments for castration-resistant prostate cancer (CRPC), as the underlying mechanisms for its progression remain elusive. Previous studies showed that androgen receptor (AR) is crucially involved in regulation of metabolism in prostate cancer (PCa) cells throughout the transition from early stage, androgen-sensitive PCa to androgen-independent CRPC. AR achieves such metabolic rewiring directively either via its transcriptional activity or via interactions with AMP-activated protein kinase (AMPK). However, due to the heterogeneous expression and activity status of AR in PCa cells, it remains a challenge to investigate the links between AR status and metabolic alterations. To this end, we compared the proteomes of three pairs of androgen-sensitive (AS) and androgen-independent (AI) PCa cell lines, namely, PC3-AR(+)/PC3, 22Rv1/Du145, and LNCaP/C42B, using an iTRAQ labeling approach. Our results revealed that most of the differentially expressed proteins between each pair function in metabolism, indicating a metabolic shift between AS and AI cells, as further validated by multiple reaction monitoring (MRM)-based quantification of nucleotides and relative comparison of fatty acids between these cell lines. Furthermore, increased adenylate kinase isoenzyme 1 (AK1) in AS relative to AI cells may result in activation of AMPK, representing a major regulatory factor involved in the observed metabolic shift in PCa cells.


Subject(s)
Peptides/metabolism , Proteome/metabolism , Proteomics/methods , Tandem Mass Spectrometry/methods , AMP-Activated Protein Kinases/metabolism , Acetyl Coenzyme A/metabolism , Adenylate Kinase/metabolism , Cell Line, Tumor , Chromatography, Liquid/methods , Cluster Analysis , Fatty Acids/metabolism , Humans , Isotope Labeling/methods , Male , Mitochondria/metabolism , Models, Biological , Nucleotides/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Proteome/classification , Receptors, Androgen/metabolism , Reproducibility of Results , Signal Transduction
14.
Mol Cell Proteomics ; 11(4): M111.008755, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22159597

ABSTRACT

Anti-Thy1 nephritis is a well-established experimental mesangial proliferative nephritis model. Exploring the molecular mechanisms of pathophysiology in anti-Thy1 nephritis may elucidate the pathogeneses of mesangial proliferation. We examined the roles and acting mechanisms of differentially expressed proteins (DEPs) by bioinformatics analysis of glomeruli proteomic profiles during the course of anti-Thy1 nephritis. In total, 108 DEPs were found by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), and 40 DEPs were identified by matrix-assisted laser desorption ionization/time of flight and liquid chromatography-MS. DEPs were classified into five clusters (Clusters 1-5), according to their expression trends using Cluster 3.0 software, involved in regulating biological processes such as the stress response, cell proliferation, apoptosis, energy metabolism, transport, and the actin cytoskeleton. The expression patterns of ten DEPs, distributed across five clusters, including AKR1A1, AGAT, ATP6V1B2, HIBADH, MDH1, MPST, NIT2, PRDX6, PSMB7, and TPI1, were validated by Western blotting. Based on Western blotting and immunohistochemistry, we also found that the DEP FHL2, which was primarily expressed in the mesangial region, was down-regulated on days 3 and 5, and up-regulated on day 10. In vitro, we found that FHL2 overexpression induced mesangial cell proliferation by increasing the number of S-phase cells and decreasing G2/M-phase cells, whereas inhibiting FHL2 had the opposite effect. This study explored novel DEPs and their expression patterns during anti-Thy1 nephritis, and elucidated FHL2's effect on mesangial cell proliferation. These results will contribute to our understanding of the pathogenesis of mesangial proliferation.


Subject(s)
LIM-Homeodomain Proteins/metabolism , Mesangial Cells/cytology , Muscle Proteins/metabolism , Nephritis/metabolism , Transcription Factors/metabolism , Animals , Cell Proliferation , Cluster Analysis , Disease Models, Animal , Isoantibodies , LIM-Homeodomain Proteins/pharmacology , Male , Mesangial Cells/drug effects , Muscle Proteins/pharmacology , Nephritis/pathology , Proteins/metabolism , Proteomics , Rats , Rats, Wistar , Transcription Factors/pharmacology , Two-Dimensional Difference Gel Electrophoresis
15.
Mol Cell Proteomics ; 11(8): 317-28, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22493183

ABSTRACT

Lipid droplets (LDs) are a neutral lipid storage organelle that is conserved across almost all species. Many metabolic syndromes are directly linked to the over-storage of neutral lipids in LDs. The study of LDs in Caenorhabditis elegans (C. elegans) has been difficult because of the lack of specific LD marker proteins. Here we report the purification and proteomic analysis of C. elegans lipid droplets for the first time. We identified 306 proteins, 63% of these proteins were previously known to be LD-proteins, suggesting a similarity between mammalian and C. elegans LDs. Using morphological and biochemical analyses, we show that short-chain dehydrogenase, DHS-3 is almost exclusively localized on C. elegans LDs, indicating that it can be used as a LD marker protein in C. elegans. These results will facilitate further mechanistic studies of LDs in this powerful genetic system, C. elegans.


Subject(s)
Biomarkers/analysis , Butyryl-CoA Dehydrogenase/analysis , Caenorhabditis elegans Proteins/analysis , Caenorhabditis elegans/metabolism , Cytoplasmic Vesicles/metabolism , Proteome/analysis , Proteomics/methods , Animals , Blotting, Western , Cytoplasmic Vesicles/ultrastructure , Lipid Metabolism , Lipids/chemistry , Mass Spectrometry , Microscopy, Confocal , Microscopy, Electron, Transmission
16.
Insect Sci ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38556782

ABSTRACT

The vast majority of all global species have circadian rhythm cycles that allow them to adapt to natural environments. These regular rhythms are regulated by core clock genes and recent studies have also implicated roles for microRNAs in this regulation. Oviposition is an important circadian behavior in the reproductive cycle of insect vectors of diseases, and little is known about the rhythm or its regulation in mosquitoes. Aedes albopictus is a diurnal mosquito that transmits arboviruses and is the major cause of outbreaks of dengue fever in China. We analyzed the oviposition rhythm patterns of A. albopictus under different light/dark conditions and show that the mosquitoes have an oviposition peak between zeitgeber time 9 (ZT 9) and ZT 12. Furthermore, the antagomir-mediated knockdown of expression of the microRNA miR-2940-1 affected the oviposition rhythm of A. albopictus. These data support the conclusion that miR-2940-1 is involved in the regulation of oviposition rhythm in A. albopictus and provide a foundation for using oviposition rhythms as a new target for vector mosquito control.

17.
Proteomics ; 13(20): 3030-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23956156

ABSTRACT

As glucose-stimulated insulin secretion of pancreatic ß cell is triggered and promoted by the metabolic messengers derived from mitochondria, mitochondria take a central stage in the normal function of ß cells. ß cells in diabetics were chronically exposed to hyperglycemia stimulation, which have been reported to exert deleterious effects on ß-cell mitochondria. However, the mechanism of the toxic effects of hyperglycemia on ß-cell mitochondria was not clear. In this study, we characterized the biological functional changes of rat INS-1ß cells and their mitochondria with chronic exposure to hyperglycemia and created a research model of chronic hyperglycemia-induced dysfunctional ß cells with damaged mitochondria. Then, SILAC-based quantitative proteomic approach was used to compare the mitochondrial protein expression from high glucose treated INS-1ß cells and control cells. The expression of some mitochondrial proteins was found with significant changes. Functional classification revealed most of these proteins were related with oxidative phosphorylation, mitochondrial protein biosynthesis, substances metabolism, transport, and cell death. These results presented some useful information about the effect of glucotoxicity on the ß-cell mitochondria.


Subject(s)
Glucose/toxicity , Insulin-Secreting Cells/pathology , Isotope Labeling/methods , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Proteome/metabolism , Animals , Blotting, Western , Cell Line , Hyperglycemia/metabolism , Hyperglycemia/pathology , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/ultrastructure , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Rats
18.
Nat Commun ; 14(1): 2292, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37085529

ABSTRACT

The initial signals governing sex determination vary widely among insects. Here we show that Armigeres subalbatus M factor (AsuMf), a male-specific duplication of an autosomal gene of the Drosophila behaviour/human splicing (DBHS) gene family, is the potential primary signal for sex determination in the human filariasis vector mosquito, Ar. subalbatus. Our results show that AsuMf satisfies two fundamental requirements of an M factor: male-specific expression and early embryonic expression. Ablations of AsuMf result in a shift from male- to female-specific splicing of doublesex and fruitless, leading to feminization of males both in morphology and general transcription profile. These data support the conclusion that AsuMf is essential for male development in Ar. subalbatus and reveal a male-determining factor that is derived from duplication and subsequent neofunctionalization of a member of the conserved DBHS family.


Subject(s)
Culicidae , Filariasis , Animals , Female , Humans , Male , Culicidae/genetics , Drosophila , Family , Mosquito Vectors/genetics , Sex Differentiation
19.
iScience ; 26(2): 106048, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36824279

ABSTRACT

The observed specificity of ß-thalassemia-subtype phenotypes makes new diagnostic strategies that complement current screening methods necessary to determine each subtype and facilitate therapeutic regimens for different patients. Here, we performed quantitative proteomics of plasma-derived extracellular vesicles (EVs) of ß-thalassemia major (TM) patients, ß-thalassemia intermedia (TI) patients, and healthy controls to explore subgroup characteristics and potential biomarkers. Plasma quantitative proteomics among the same cohorts were analyzed in parallel to compare the biomarker potential of both specimens. EV proteomics showed significantly more abnormalities in immunity and lipid metabolism in TI and TM, respectively. The differential proteomic patterns of EVs were consistent with but more striking than those of plasma. Notably, we also found EV proteins to have a superior performance for discriminating ß-thalassemia subtypes. These findings allowed us to propose a diagnostic model consisting of five proteins in EVs with subtyping potential, demonstrating the ability of plasma-derived EVs for the diagnosis of ß-thalassemia patients.

20.
Infect Dis Poverty ; 11(1): 62, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35658950

ABSTRACT

BACKGROUND: Zika virus (ZIKV) and dengue virus (DENV) are closely related flaviviruses primarily transmitted by Aedes mosquitoes. Armigeres subalbatus is an emerging and widely distributed mosquito, and ZIKV has been detected and isolated from it. However, it is not clear whether Ar. subalbatus could be a vector for ZIKV and DENV or not. In this study, we investigated the infection and transmission of Ar. subalbatus to ZIKV and DENV. METHODS: A line of Ar. subalbatus was isolated from Guangdong, China, and further identified by the mitochondrial cytochrome oxidase subunit 1 (COI) gene. The adults of Ar. subalbatus were fed with blood meal containing ZIKV or DENV-2. At 4, 7, 10, 14, and 21 days post-inoculation (dpi), the infections of ZIKV or DENV-2 in the midguts, ovaries and salivary glands were detected and quantified by RT-PCR and RT-qPCR. To assess the transmissibility, suckling mice were exposed to bites of ZIKV-infected mosquitoes, and ZIKV was detected in brain tissue by RT-qPCR and plaque assays. Furthermore, the larvae of Ar. subalbatus were reared in artificial urine containing ZIKV or DENV-2. The infection rates and viral titers of larvae and adults were analyzed by RT-PCR and RT-qPCR, and the viral distribution in larval tissues was observed by immunohistochemistry. Chi-square test and one-way ANOVA analysis were used for assessing the infection rate and viral titer in varied tissues and different time points, respectively. RESULTS: Following oral inoculation, ZIKV but not DENV-2 could be detected in Ar. subalbatus midguts at 4 dpi, ovaries at 7 dpi and salivary glands at 10 dpi. The highest infection rate (IR) of ZIKV was 27.8% in midgut at 7 dpi, 9.7% in ovary and 5.6% in salivary gland at 21 dpi. Eight days after being bitten by ZIKV-positive mosquitoes, ZIKV was detected in three brain tissues out of four suckling mice exposed to bites. ZIKV could be detected in the larvae reared in artificial urine contained ZIKV at a high concentration of 105 pfu/ml and various tissues of adults with a low infection rate (0.70-1.35%). ZIKV could be observed in anal papillae and midgut of larvae at 4 dpi under laboratory conditions. CONCLUSIONS: ZIKV but not DENV-2 can infect Ar. subalbatus by blood meal and artificial urine, and the infected mosquitoes can transmit ZIKV to suckling mice by bite. From these findings, we can conclude that the Ar. subalbatus isolated from Guangdong province, China, is a potential vector for ZIKV and should therefore be considered in vector control programs to prevent and control of Zika virus disease.


Subject(s)
Aedes , Dengue , Zika Virus Infection , Zika Virus , Animals , Disease Vectors , Female , Larva , Mice , Mosquito Vectors
SELECTION OF CITATIONS
SEARCH DETAIL