Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.053
Filter
Add more filters

Publication year range
1.
Hum Genomics ; 18(1): 21, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38414044

ABSTRACT

BACKGROUND: Single-nucleotide variants (SNVs) within gene coding sequences can significantly impact pre-mRNA splicing, bearing profound implications for pathogenic mechanisms and precision medicine. In this study, we aim to harness the well-established full-length gene splicing assay (FLGSA) in conjunction with SpliceAI to prospectively interpret the splicing effects of all potential coding SNVs within the four-exon SPINK1 gene, a gene associated with chronic pancreatitis. RESULTS: Our study began with a retrospective analysis of 27 SPINK1 coding SNVs previously assessed using FLGSA, proceeded with a prospective analysis of 35 new FLGSA-tested SPINK1 coding SNVs, followed by data extrapolation, and ended with further validation. In total, we analyzed 67 SPINK1 coding SNVs, which account for 9.3% of the 720 possible coding SNVs. Among these 67 FLGSA-analyzed SNVs, 12 were found to impact splicing. Through detailed comparison of FLGSA results and SpliceAI predictions, we inferred that the remaining 653 untested coding SNVs in the SPINK1 gene are unlikely to significantly affect splicing. Of the 12 splice-altering events, nine produced both normally spliced and aberrantly spliced transcripts, while the remaining three only generated aberrantly spliced transcripts. These splice-impacting SNVs were found solely in exons 1 and 2, notably at the first and/or last coding nucleotides of these exons. Among the 12 splice-altering events, 11 were missense variants (2.17% of 506 potential missense variants), and one was synonymous (0.61% of 164 potential synonymous variants). Notably, adjusting the SpliceAI cut-off to 0.30 instead of the conventional 0.20 would improve specificity without reducing sensitivity. CONCLUSIONS: By integrating FLGSA with SpliceAI, we have determined that less than 2% (1.67%) of all possible coding SNVs in SPINK1 significantly influence splicing outcomes. Our findings emphasize the critical importance of conducting splicing analysis within the broader genomic sequence context of the study gene and highlight the inherent uncertainties associated with intermediate SpliceAI scores (0.20 to 0.80). This study contributes to the field by being the first to prospectively interpret all potential coding SNVs in a disease-associated gene with a high degree of accuracy, representing a meaningful attempt at shifting from retrospective to prospective variant analysis in the era of exome and genome sequencing.


Subject(s)
RNA Splicing , Trypsin Inhibitor, Kazal Pancreatic , Humans , Trypsin Inhibitor, Kazal Pancreatic/genetics , Retrospective Studies , RNA Splicing/genetics , Exons/genetics , Base Sequence , Alternative Splicing/genetics
2.
Exp Cell Res ; 442(2): 114233, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39216662

ABSTRACT

Gasotransmitters are endogenous gaseous signaling molecules that can freely pass through cell membranes and transmit signals between cells, playing multiple roles in cell signal transduction. Due to extensive and ongoing research in this field, we have successfully identified many gasotransmitters so far, among which nitric oxide, carbon monoxide, and hydrogen sulfide are best studied. Gasotransmitters are implicated in various diseases related to necroptosis, such as cardiovascular diseases, inflammation, ischemia-reperfusion, infectious diseases, and neurological diseases. However, the mechanisms of their effects on necroptosis are not fully understood. This review focuses on endogenous gasotransmitter synthesis and metabolism and discusses their roles in necroptosis, aiming to offer new insights for the therapeutic approaches to necroptosis-associated diseases.


Subject(s)
Gasotransmitters , Necroptosis , Nitric Oxide , Humans , Gasotransmitters/metabolism , Animals , Nitric Oxide/metabolism , Signal Transduction , Hydrogen Sulfide/metabolism , Carbon Monoxide/metabolism
3.
Exp Cell Res ; 441(2): 114172, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39053869

ABSTRACT

In recent years, the impact of age-related diseases on human health has become increasingly severe, and developing effective drugs to deal with these diseases has become an urgent task. Considering the essential regulatory role of hydrogen sulfide (H2S) in these diseases, it is regarded as a promising target for treatment. H2S is a novel gaseous transmitter involved in many critical physiological activities, including anti-oxidation, anti-inflammation, and angiogenesis. H2S also regulates cell activities such as cell proliferation, migration, invasion, apoptosis, and autophagy. These regulatory effects of H2S contribute to relieving and treating age-related diseases. In this review, we mainly focus on the pathogenesis and treatment prospects of H2S in regulating age-related diseases.


Subject(s)
Aging , Hydrogen Sulfide , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/pharmacology , Humans , Aging/metabolism , Animals , Autophagy/drug effects , Apoptosis/drug effects , Cell Proliferation/drug effects
4.
Nucleic Acids Res ; 51(13): 6634-6653, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37254808

ABSTRACT

Mammalian erythroid development can be divided into three stages: hematopoietic stem and progenitor cell (HSPC), erythroid progenitor (Ery-Pro), and erythroid precursor (Ery-Pre). However, the mechanisms by which the 3D genome changes to establish the stage-specific transcription programs that are critical for erythropoiesis remain unclear. Here, we analyze the chromatin landscape at multiple levels in defined populations from primary human erythroid culture. While compartments and topologically associating domains remain largely unchanged, ∼50% of H3K27Ac-marked enhancers are dynamic in HSPC versus Ery-Pre. The enhancer anchors of enhancer-promoter loops are enriched for occupancy of respective stage-specific transcription factors (TFs), indicating these TFs orchestrate the enhancer connectome rewiring. The master TF of erythropoiesis, GATA1, is found to occupy most erythroid gene promoters at the Ery-Pro stage, and mediate conspicuous local rewiring through acquiring binding at the distal regions in Ery-Pre, promoting productive erythroid transcription output. Knocking out GATA1 binding sites precisely abrogates local rewiring and corresponding gene expression. Interestingly, knocking down GATA1 can transiently revert the cell state to an earlier stage and prolong the window of progenitor state. This study reveals mechanistic insights underlying chromatin rearrangements during development by integrating multidimensional chromatin landscape analyses to associate with transcription output and cellular states.


Subject(s)
Chromatin , Erythropoiesis , GATA1 Transcription Factor , Animals , Humans , Cell Differentiation , Chromatin/genetics , GATA1 Transcription Factor/genetics , GATA1 Transcription Factor/metabolism , Regulatory Sequences, Nucleic Acid , Transcription Factors/genetics
5.
J Cell Mol Med ; 28(19): e70073, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39397259

ABSTRACT

Human papillomavirus (HPV) infection is a causative factor in the occurrence and progression of oropharyngeal squamous cell carcinoma (OPSCC). In recent years, clinical studies have found that HPV-positive OPSCC patients may present a better prognosis than HPV-negative patients, yet the underlying causes are unclear. This study aimed to investigate the relevance of HPV infection and the prognosis of OPSCC. On this basis, we aimed to establish a prediction model to accurately predict the prognosis and guide clinical practice. We analysed the records of 233 patients with OPSCC. Cox regression was applied to identify factors associated with survival. Moreover, variables with significant discrepancies were integrated into a nomogram model to predict prognosis. The results showed that HPV was an independent prognostic factor for OS and PFS. Immunoglobulin Heavy Constant Mu (IGHM) mRNA was significantly upregulated in patients with HPV-positive OPSCC. Crucially, IGHM expression was associated with better prognosis. The receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis both confirmed that the prognostic model exhibits good performance. In summary, HPV infection were independent prognostic factors for OPSCC. IGHM may be the key contributors to the prognostic differences in HPV-associated OPSCC. This nomogram model was able to accurately predict the prognosis of patients.


Subject(s)
Oropharyngeal Neoplasms , Papillomavirus Infections , Humans , Male , Female , Oropharyngeal Neoplasms/virology , Oropharyngeal Neoplasms/mortality , Oropharyngeal Neoplasms/genetics , Prognosis , Middle Aged , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Papillomavirus Infections/genetics , Nomograms , ROC Curve , Papillomaviridae/genetics , Aged , Carcinoma, Squamous Cell/virology , Carcinoma, Squamous Cell/genetics , Biomarkers, Tumor/genetics , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/genetics , Human Papillomavirus Viruses
6.
J Cell Physiol ; 239(2): e31149, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308838

ABSTRACT

Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3ß/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Mice , Animals , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/prevention & control , Diabetic Cardiomyopathies/metabolism , Antioxidants/pharmacology , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Glucose/metabolism , AMP-Activated Protein Kinases/metabolism , Lipid Metabolism/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Signal Transduction , Diabetes Mellitus, Experimental/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Mice, Transgenic
7.
Immunology ; 173(3): 497-510, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39022997

ABSTRACT

Tuberculosis (TB) is still an urgent global public health problem. Notably, mucosal-associated invariant T (MAIT) cells play an important role in early anti-TB immune response. Targeted control of them may be an effective method to improve vaccine efficacy and TB treatment. However, the biology and signal regulation mechanisms of MAIT cells in TB patients are still poorly understood. Previous studies have been limited by the lack of reagents to specifically identify MAIT cells. In addition, the use of alternative markers may subsume non-MAIT cell into MAIT cell populations. In this study, the human MR1 tetramer which can specifically identify MAIT cells was used to further explore the effect and mechanism of MAIT cells in anti-TB immune response. Our results showed that the tetramer+ MAIT cells in peripheral blood of TB patients were mainly CD8+ or CD4-CD8- cells, and very few were CD4+ cells. After BCG infecting autologous antigen-presenting cells, MAIT cells in patients produced significantly higher levels of cytokines, lysis and proliferation compared with healthy controls. After suppression of mTORC1 by the mTORC1-specific inhibitor rapamycin, the immune response of MAIT cells in patients was significantly reduced. This study demonstrates that peripheral blood tetramer+ MAIT cells from TB patients have significant anti-TB immune effect, which is regulated by mTORC1. This could provide ideas and potential therapeutic targets for the development of novel anti-TB immunotherapy.


Subject(s)
Histocompatibility Antigens Class I , Mechanistic Target of Rapamycin Complex 1 , Minor Histocompatibility Antigens , Mucosal-Associated Invariant T Cells , Mycobacterium tuberculosis , Tuberculosis , Humans , Mucosal-Associated Invariant T Cells/immunology , Mucosal-Associated Invariant T Cells/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , Adult , Female , Male , Minor Histocompatibility Antigens/metabolism , Minor Histocompatibility Antigens/immunology , Tuberculosis/immunology , Mycobacterium tuberculosis/immunology , Middle Aged , Cytokines/metabolism , Sirolimus/pharmacology , Young Adult , Lymphocyte Activation , CD8-Positive T-Lymphocytes/immunology
8.
Mol Med ; 30(1): 34, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448811

ABSTRACT

BACKGROUND: Imbalance in energy regulation is a major cause of insulin resistance and diabetes. Melanocortin-4 receptor (MC4R) signaling at specific sites in the central nervous system has synergistic but non-overlapping functions. However, the mechanism by which MC4R in the arcuate nucleus (ARC) region regulates energy balance and insulin resistance remains unclear. METHODS: The MC4Rflox/flox mice with proopiomelanocortin (POMC) -Cre mice were crossed to generate the POMC-MC4Rflox/+ mice. Then POMC-MC4Rflox/+ mice were further mated with MC4Rflox/flox mice to generate the POMC-MC4Rflox/flox mice in which MC4R is selectively deleted in POMC neurons. Bilateral injections of 200 nl of AAV-sh-Kir2.1 (AAV-sh-NC was used as control) were made into the ARC of the hypothalamus. Oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure were measured by using the CLAMS; Total, visceral and subcutaneous fat was analyzed using micro-CT. Co-immunoprecipitation assays (Co-IP) were used to analyze the interaction between MC4R and Kir2.1 in GT1-7 cells. RESULTS: POMC neuron-specific ablation of MC4R in the ARC region promoted food intake, impaired energy expenditure, leading to increased weight gain and impaired systemic glucose homeostasis. Additionally, MC4R ablation reduced the activation of POMC neuron, and is not tissue-specific for peripheral regulation, suggesting the importance of its central regulation. Mechanistically, sequencing analysis and Co-IP assay demonstrated a direct interaction of MC4R with Kir2.1. Knockdown of Kir2.1 in POMC neuron-specific ablation of MC4R restored the effect of MC4R ablation on energy expenditure and systemic glucose homeostasis, indicating by reduced body weight and ameliorated insulin resistance. CONCLUSION: Hypothalamic POMC neuron-specific knockout of MC4R affects energy balance and insulin sensitivity by regulating Kir2.1. Kir2.1 represents a new target and pathway that could be targeted in obesity.


Subject(s)
Insulin Resistance , Animals , Mice , Glucose , Hypothalamus , Insulin Resistance/genetics , Neurons , Pro-Opiomelanocortin/genetics , Receptor, Melanocortin, Type 4/genetics
9.
J Cell Sci ; 135(10)2022 05 15.
Article in English | MEDLINE | ID: mdl-35510498

ABSTRACT

Distant metastasis mainly occurs through hematogenous dissemination, where suspended circulating tumor cells (CTCs) experience a considerable level of fluid shear stress. We recently reported that shear flow induced substantial apoptosis of CTCs, although a small subpopulation could still persist. However, how suspended tumor cells survive in shear flow remains poorly understood. This study finds that fluid shear stress eliminates the majority of suspended CTCs and increases nuclear size, whereas it has no effect on the viability of adherent tumor cells and decreases their nuclear size. Shear flow promotes histone acetylation in suspended tumor cells, the inhibition of which using one drug suppresses shear-induced nuclear expansion, suggesting that shear stress might increase nuclear size through histone acetylation. Suppressing histone acetylation-mediated nuclear expansion enhances shear-induced apoptosis of CTCs. These findings suggest that suspended tumor cells respond to shear stress through histone acetylation-mediated nuclear expansion, which protects CTCs from shear-induced destruction. Our study elucidates a unique mechanism underlying the mechanotransduction of suspended CTCs to shear flow, which might hold therapeutic promise for CTC eradication.


Subject(s)
Neoplastic Cells, Circulating , Cell Count , Histones , Humans , Mechanotransduction, Cellular , Neoplastic Cells, Circulating/pathology , Stress, Mechanical
10.
Anal Chem ; 96(1): 437-445, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38150621

ABSTRACT

Damage of reactive oxygen species to various molecules such as DNA has been related to many chronic and degenerative human diseases, aging, and even cancer. 8-Oxo-7,8-dihydroguanine (OG), the most significant oxidation product of guanine (G), has become a biomarker of oxidative stress as well as gene regulation. The positive effect of OG in activating transcription and the negative effect in inducing mutation are a double-edged sword; thus, site-specific quantification is helpful to quickly reveal the functional mechanism of OG at hotspots. Due to the possible biological effects of OG at extremely low abundance in the genome, the monitoring of OG is vulnerable to signal interference from a large amount of G. Herein, based on rolling circle amplification-induced G-triplex formation and Thioflavin T fluorescence enhancement, an ultrasensitive strategy for locus-specific OG quantification was constructed. Owing to the difference in the hydrogen-bonding pattern between OG and G, the nonspecific background signal of G sites was completely suppressed through enzymatic ligation of DNA probes and the triggered specificity of rolling circle amplification. After the signal amplification strategy was optimized, the high detection sensitivity of OG sites with an ultralow detection limit of 0.18 amol was achieved. Under the interference of G sites, as little as 0.05% of OG-containing DNA was first distinguished. This method was further used for qualitative and quantitative monitoring of locus-specific OG in genomic DNA under oxidative stress and identification of key OG sites with biological function.


Subject(s)
DNA , Guanine , Humans , DNA/genetics , Oxidative Stress , Reactive Oxygen Species , Nucleic Acid Amplification Techniques
11.
Biochem Biophys Res Commun ; 716: 150002, 2024 07 05.
Article in English | MEDLINE | ID: mdl-38697011

ABSTRACT

Type 2 diabetes mellitus (T2DM) significantly impairs the functionality and number of endothelial progenitor cells (EPCs) and resident endothelial cells, critical for vascular repair and regeneration, exacerbating the risk of vascular complications. GLP-1 receptor agonists, like dulaglutide, have emerged as promising therapeutic agents due to their multifaceted effects, including the enhancement of EPC activity and protection of endothelial cells. This study investigates dulaglutide's effects on peripheral blood levels of CD34+ and CD133+ cells in a mouse model of lower limb ischemia and its protective mechanisms against high-glucose-induced damage in endothelial cells. Results demonstrated that dulaglutide significantly improves blood flow, reduces tissue damage and inflammation in ischemic limbs, and enhances glycemic control. Furthermore, dulaglutide alleviated high-glucose-induced endothelial cell damage, evident from improved tube formation, reduced reactive oxygen species accumulation, and restored endothelial junction integrity. Mechanistically, dulaglutide mitigated mitochondrial fission in endothelial cells under high-glucose conditions, partly through maintaining SIRT1 expression, which is crucial for mitochondrial dynamics. This study reveals the potential of dulaglutide as a therapeutic option for vascular complications in T2DM patients, highlighting its role in improving endothelial function and mitochondrial integrity.


Subject(s)
Diabetes Mellitus, Experimental , Endothelial Progenitor Cells , Glucagon-Like Peptides , Glucose , Immunoglobulin Fc Fragments , Mitochondrial Dynamics , Recombinant Fusion Proteins , Sirtuin 1 , Animals , Mice , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Endothelial Progenitor Cells/drug effects , Endothelial Progenitor Cells/metabolism , Glucagon-Like Peptides/analogs & derivatives , Glucagon-Like Peptides/pharmacology , Glucagon-Like Peptides/therapeutic use , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Immunoglobulin Fc Fragments/pharmacology , Ischemia/metabolism , Ischemia/drug therapy , Ischemia/pathology , Mice, Inbred C57BL , Mitochondrial Dynamics/drug effects , Recombinant Fusion Proteins/pharmacology , Sirtuin 1/drug effects , Sirtuin 1/metabolism
12.
J Transl Med ; 22(1): 528, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824544

ABSTRACT

Given the insidious and high-fatality nature of cardiovascular diseases (CVDs), the emergence of fluoride as a newly identified risk factor demands serious consideration alongside traditional risk factors. While vascular smooth muscle cells (VSMCs) play a pivotal role in the progression of CVDs, the toxicological impact of fluoride on VSMCs remains largely uncharted. In this study, we constructed fluorosis model in SD rats and A7R5 aortic smooth muscle cell lines to confirm fluoride impaired VSMCs. Fluoride aggravated the pathological damage of rat aorta in vivo. Then A7R5 were exposed to fluoride with concentration ranging from 0 to 1200 µmol/L over a 24-h period, revealing a dose-dependent inhibition of cell proliferation and migration. The further metabolomic analysis showed alterations in metabolite profiles induced by fluoride exposure, notably decreasing organic acids and lipid molecules level. Additionally, gene network analysis underscored the frequency of fluoride's interference with amino acids metabolism, potentially impacting the tricarboxylic acid (TCA) cycle. Our results also highlighted the ATP-binding cassette (ABC) transporters pathway as a central element in VSMC impairment. Moreover, we observed a dose-dependent increase in osteopontin (OPN) and α-smooth muscle actin (α-SMA) mRNA level and a dose-dependent decrease in ABC subfamily C member 1 (ABCC1) and bestrophin 1 (BEST1) mRNA level. These findings advance our understanding of fluoride as a CVD risk factor and its influence on VSMCs and metabolic pathways, warranting further investigation into this emerging risk factor.


Subject(s)
Amino Acids , Cell Proliferation , Fluorides , Muscle, Smooth, Vascular , Rats, Sprague-Dawley , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Fluorides/pharmacology , Cell Line , Amino Acids/metabolism , Cell Proliferation/drug effects , Rats , Cell Movement/drug effects , Male , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Metabolomics , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Gene Regulatory Networks/drug effects
13.
New Phytol ; 244(3): 840-854, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39262026

ABSTRACT

Style penetration by pollen tubes is essential for reproductive success, a process requiring canonical Rab5s in Arabidopsis. However, functional loss of Arabidopsis Vps9a, the gene encoding for guanine nucleotide exchange factor (GEF) of Rab5s, did not affect male transmission, implying the presence of a compensation program or redundancy. By combining genetic, cytological, and molecular approaches, we report that Arabidopsis Vps9b is a pollen-preferential gene, redundantly mediating pollen tube penetration of style with Vps9a. Vps9b is functionally interchangeable with Vps9a, whose functional distinction results from distinct expression profiles. Functional loss of Vps9a and Vps9b results in the mis-targeting of Rab5-dependent tonoplast proteins, defective vacuolar biogenesis, disturbed distribution of post-Golgi vesicles, increased cellular turgor, cytosolic acidification, and disrupted organization of actin microfilaments (MF) in pollen tubes, which collectively lead to the failure of pollen tubes to grow through style.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Pollen Tube , Protein Isoforms , Vacuoles , Pollen Tube/growth & development , Pollen Tube/genetics , Pollen Tube/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Protein Isoforms/metabolism , Protein Isoforms/genetics , Vacuoles/metabolism , Actin Cytoskeleton/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Golgi Apparatus/metabolism , Mutation/genetics
14.
Opt Lett ; 49(10): 2625-2628, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748121

ABSTRACT

We present an encoding scheme of a single logical qubit with single-sided quantum dot (QD)-cavity systems, which is immune to the collective decoherence. By adjusting the Purcell factor to satisfy the balanced reflection condition, the detrimental effects of unbalanced reflection between the coupled and uncoupled QD-cavity systems can be effectively suppressed. Furthermore, the fidelity of each step can be increased to unity regardless of the strong coupling regime and the weak coupling regime of cavity quantum electrodynamics (QED) with the assistance of waveform correctors. The scheme requires QD-cavity systems and simple linear optical elements, which can be implemented with the currently experimental techniques.

15.
FASEB J ; 37(2): e22784, 2023 02.
Article in English | MEDLINE | ID: mdl-36692416

ABSTRACT

Hypoxia-ischemia (HI) is a major cause of brain damage in neonates. Mitochondrial dysfunction acts as a hub for a broad spectrum of signaling events, culminating in cell death triggered by HI. A neuroprotective role of melatonin (MT) has been proposed, and mitophagy regulation seems to be important for cell survival. However, the molecular mechanisms underlying MT-mediated mitophagy during HI treatment are poorly defined. Nucleotide-binding oligomerization domain and leucine-rich repeat-containing protein X1 (NLRX1) has emerged as a critical regulator of mitochondrial dynamics and neuronal death that participates in the pathology of diverse diseases. This study aimed to clarify whether NLRX1 participates in the regulation of mitophagy during MT treatment for hypoxic-ischemic brain damage (HIBD). We demonstrated that MT protected neonates from HIBD through NLRX1-mediated mitophagy in vitro and in vivo. Meanwhile, MT upregulated the expression of NLRX1, Beclin-1, and autophagy-related 7 (ATG7) but decreased the expression of the mammalian target of rapamycin (mTOR) and translocase of the inner membrane of mitochondrion 23 (TIM23). Moreover, the neuroprotective effects of MT were abolished by silencing NLRX1 after oxygen-glucose deprivation (OGD). In addition, the downregulation of mTOR and upregulation of Beclin-1 and ATG7 by MT were inhibited after silencing NLRX1 under OGD. In summary, MT modulates mitophagy induction through NLRX1 and plays a protective role in HIBD, providing insight into potential therapeutic targets for MT to exert neuroprotection.


Subject(s)
Hypoxia-Ischemia, Brain , Melatonin , Neuroprotective Agents , Humans , Infant, Newborn , Beclin-1/metabolism , Brain/metabolism , Glucose/pharmacology , Hypoxia/drug therapy , Hypoxia-Ischemia, Brain/metabolism , Leucine/pharmacology , Melatonin/pharmacology , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Nucleotides , Oxygen/pharmacology , TOR Serine-Threonine Kinases/metabolism
16.
Nitric Oxide ; 150: 18-26, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38971520

ABSTRACT

Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.


Subject(s)
Hydrogen Sulfide , Skin Diseases , Hydrogen Sulfide/metabolism , Humans , Skin Diseases/drug therapy , Skin Diseases/metabolism , Animals , Skin/metabolism
17.
Nitric Oxide ; 152: 19-30, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39260562

ABSTRACT

The mutual regulation between hydrogen sulfide (H2S) and microRNA (miRNA) is involved in the development of many diseases, including cancer, cardiovascular disease, inflammatory disease, and high-risk pregnancy. Abnormal expressions of endogenous H2S-producing enzyme and miRNA in tissues and cells often indicate the occurrence of diseases, so the maintenance of their normal levels in the body can mitigate damages caused by various factors. Many studies have found that H2S can promote the migration, invasion, and proliferation of cancer cells by regulating the expression of miRNA, while many H2S donors can inhibit cancer progression by interfering with the proliferation, apoptosis, cell cycle, metastasis, and angiogenesis of cancer cells. Furthermore, the mutual regulation between H2S and miRNA can also prevent cell injury in cardiovascular disease and inflammatory disease through anti-inflammation, anti-oxidation, anti-apoptosis, and pro-autophagy. In addition, H2S can promote angiogenesis and relieve vasoconstriction by regulating the expression of miRNA, thereby improving fetal growth in high-risk pregnancy. In this review, we discuss the mechanism of mutual regulation between H2S and miRNA in various diseases, which may provide reliable therapeutic targets for these diseases.


Subject(s)
Cardiovascular Diseases , Hydrogen Sulfide , MicroRNAs , Neoplasms , Hydrogen Sulfide/metabolism , Humans , MicroRNAs/metabolism , Cardiovascular Diseases/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Animals , Inflammation/metabolism , Female , Pregnancy
18.
Langmuir ; 40(3): 1848-1857, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38183664

ABSTRACT

Elaborating the specific reactive oxygen species (ROS) involved in the photocatalytic degradation of atrazine (ATZ) is of great significance for elucidating the underlying mechanism. This study provided conclusive evidence that hydroxyl radicals (·OH) were the primary ROS responsible for the efficient photocatalytic degradation of ATZ, thereby questioning the reliability of widely adopted radical quenching techniques in discerning authentic ROS species. As an illustration, oxygen-modified g-C3N4 (OCN) was prepared to counteract the limitations of pristine g-C3N4 (CN). Comparative assessments between CN and OCN revealed a remarkable 10.44-fold improvement in the photocatalytic degradation of ATZ by OCN. This enhancement was ascribed to the increased content of C-O functional groups on the surface of the OCN, which facilitated the conversion of superoxide radicals (·O2-) into hydrogen peroxide (H2O2), subsequently leading to the generation of ·OH. The increased production of ·OH contributed to the efficient dealkylation, dechlorination, and hydroxylation of ATZ. Furthermore, toxicity assessments revealed a significant reduction in ATZ toxicity following its photocatalytic degradation by OCN. This study sheds light on the intricate interconversion of ROS and offers valuable mechanistic insights into the photocatalytic degradation of ATZ.

19.
Pharmacol Res ; 206: 107264, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38876443

ABSTRACT

Disturbances in copper (Cu) homeostasis have been observed in diabetes and associated complications. Cu is an essential micronutrient that plays important roles in various fundamental biological processes. For example, diabetic cardiomyopathy is associated with elevated levels of Cu in the serum and tissues. Therefore, targeting Cu may be a novel treatment strategy for diabetic complications. This review provides an overview of physiological Cu metabolism and homeostasis, followed by a discussion of Cu metabolism disorders observed during the occurrence and progression of diabetic complications. Finally, we discuss the recent therapeutic advances in the use of Cu coordination complexes as treatments for diabetic complications and their potential mechanisms of action. This review contributes to a complete understanding of the role of Cu in diabetic complications and demonstrates the broad application prospects of Cu-coordinated compounds as potential therapeutic agents.


Subject(s)
Copper , Diabetes Complications , Humans , Copper/metabolism , Animals , Diabetes Complications/metabolism , Diabetes Complications/drug therapy , Homeostasis
20.
Diabetes Obes Metab ; 2024 Oct 16.
Article in English | MEDLINE | ID: mdl-39415313

ABSTRACT

AIM: To explore the association between the non-high-density lipoprotein cholesterol (HDL-C)/HDL-C ratio (NHHR) and the risk of major adverse cardiovascular events (MACEs) and overall mortality in patients with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS: NHHR, calculated as (total cholesterol - HDL-C)/HDL-C, was evaluated in 10,188 participants. Cox proportional hazard regression models were employed to assess the association of NHHR with future risk of MACEs and overall mortality. Restricted cubic spline analysis, smooth curve fitting and piecewise regression models were utilized to explore the non-linear correlation and establish the threshold. Subgroup and interaction analyses verified the robustness of the findings. The area under the receiver operating characteristic area under the curve assessed the additional predictive value of NHHR beyond conventional risk factors. RESULTS: After adjusting for confounding factors, each 1-unit increase in NHHR was associated with a 12% increased risk of MACEs (hazard ratio [HR]: 1.12, 95% confidence interval [CI]: 1.07-1.16; p < 0.0001), a 5% increase in overall mortality (HR: 1.05, 95% CI: 1.01-1.10; p = 0.0256), a 10% increase in cardiovascular disease mortality (HR 1.10, 95% CI: 1.03-1.18; p = 0.0074), an 12% increase in non-fatal myocardial infarction (HR: 1.12, 95% CI: 1.05-1.18; p = 0.0002), and an 11% increase in non-fatal stroke (HR: 1.11, 95% CI: 1.02-1.20; p = 0.0123). Analyses showed a non-linear relationship between NHHR and MACEs in patients with T2DM (non-linearity p < 0.001). A two-stage linear regression model identified a threshold for MACEs at 6.28. Integration NHHR into the conventional model significantly enhanced predictive accuracy for MACEs. CONCLUSIONS: NHHR is a predictor of the risk of developing MACEs and overall mortality in patients with T2DM, with higher NHHR values independently associated with increased future MACE risks after full adjustment for confounders.

SELECTION OF CITATIONS
SEARCH DETAIL