Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Macromol Rapid Commun ; : e2400549, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39137300

ABSTRACT

Aqueous emulsion polymerization is a robust technique for preparing nanoparticles of block copolymers; however, it typically yields spherical nanoassemblies. The scale preparation of nanoassemblies with nonspherical high-order morphologies is a challenge, particularly 2D core-shell nanosheets. In this study, the polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are combined to demonstrate the preparation of 2D nanosheets and their aggregates via aqueous reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. First, the crucial crystallizable component for CDSA, hydroxyethyl methacrylate polycaprolactone (HPCL) macromonomer is synthesized by ring opening polymerization (ROP). Subsequently, the RAFT emulsion polymerization of HPCL is conducted to generate crystallizable nanomicelles by a grafting-through approach. This PISA process simultaneously prepared spherical latices and bottlebrush block copolymers comprising poly(N',N'-dimethylacrylamide)-block-poly(hydroxyethyl methacrylate polycaprolactone) (PDMA-b-PHPCL). The latexes are now served as seeds for inducing the formation of 2D hexagonal nanosheets, bundle-shaped and flower-like aggregation via the CDSA of PHPCL segments and unreacted HPCL during cooling. Electron microscope analysis trace the morphology evolution of these 2D nanoparticles and reveal that an appropriate crystallized component of PHPCL blocks play a pivotal role in forming a hierarchical structure. This work demonstrates significant potential for large-scale production of 2D nanoassemblies through RAFT emulsion polymerization.

2.
Chem Commun (Camb) ; 60(25): 3429-3432, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38441958

ABSTRACT

To overcome the limitation of photocatalysts with dual functionality of water oxidation and proton reduction, we proposed a novel bismuth-based Ba2BiV3O11 (BBVO) photocatalyst, which can simultaneously drive the proton reduction reaction under UV light and water oxidation reaction under visible light. After doping with sulfur through an in situ vulcanization strategy, the light absorption and charge separation efficiencies of the sulfur-doped BBVO were significantly improved, thus boosting its oxygen evolution activity (64 µmol h-1) by more than 16 times compared with independent BBVO. The experimental results demonstrate that BBVO can be employed as a very promising bismuth-based photocatalyst for solar energy conversion.

SELECTION OF CITATIONS
SEARCH DETAIL