Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nucleic Acids Res ; 52(D1): D1010-D1017, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37791879

ABSTRACT

Genome-wide association studies (GWAS) have identified numerous genetic variants associated with diseases and traits. However, the functional interpretation of these variants remains challenging. Expression quantitative trait loci (eQTLs) have been widely used to identify mutations linked to disease, yet they explain only 20-50% of disease-related variants. Single-cell eQTLs (sc-eQTLs) studies provide an immense opportunity to identify new disease risk genes with expanded eQTL scales and transcriptional regulation at a much finer resolution. However, there is no comprehensive database dedicated to single-cell eQTLs that users can use to search, analyse and visualize them. Therefore, we developed the scQTLbase (http://bioinfo.szbl.ac.cn/scQTLbase), the first integrated human sc-eQTLs portal, featuring 304 datasets spanning 57 cell types and 95 cell states. It contains ∼16 million SNPs significantly associated with cell-type/state gene expression and ∼0.69 million disease-associated sc-eQTLs from 3 333 traits/diseases. In addition, scQTLbase offers sc-eQTL search, gene expression visualization in UMAP plots, a genome browser, and colocalization visualization based on the GWAS dataset of interest. scQTLbase provides a one-stop portal for sc-eQTLs that will significantly advance the discovery of disease susceptibility genes.


Subject(s)
Databases, Genetic , Genome-Wide Association Study , Quantitative Trait Loci , Humans , Gene Expression Regulation , Genetic Predisposition to Disease , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci/genetics
2.
Front Genet ; 14: 1079035, 2023.
Article in English | MEDLINE | ID: mdl-36873939

ABSTRACT

Background: An imbalance of redox homeostasis participates in tumorigenesis, proliferation, and metastasis, which results from the production of reactive oxygen species (ROS). However, the biological mechanism and prognostic significance of redox-associated messenger RNAs (ramRNAs) in lung adenocarcinoma (LUAD) still remain unclear. Methods: Transcriptional profiles and clinicopathological information were retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) of LUAD patients. A total of 31 overlapped ramRNAs were determined, and patients were separated into three subtypes by unsupervised consensus clustering. Biological functions and tumor immune-infiltrating levels were analyzed, and then, differentially expressed genes (DEGs) were identified. The TCGA cohort was divided into a training set and an internal validation set at a ratio of 6:4. Least absolute shrinkage and selection operator regression were used to compute the risk score and determine the risk cutoff in the training set. Both TCGA and GEO cohort were distinguished into a high-risk or low-risk group at the median cutoff, and then, relationships of mutation characteristics, tumor stemness, immune differences, and drug sensitivity were investigated. Results: Five optimal signatures (ANLN, HLA-DQA1, RHOV, TLR2, and TYMS) were selected. Patients in the high-risk group had poorer prognosis, higher tumor mutational burden, overexpression of PD-L1, and lower immune dysfunction and exclusion score compared with the low-risk group. Cisplatin, docetaxel, and gemcitabine had significantly lower IC50 in the high-risk group. Conclusion: This study constructed a novel predictive signature of LUAD based on redox-associated genes. Risk score based on ramRNAs served as a promising biomarker for prognosis, TME, and anti-cancer therapies of LUAD.

3.
Gene ; 836: 146677, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35714799

ABSTRACT

Glycosylation modification plays a vital role in tumor progression and is highly associated with glioma prognosis. However, the influence of glycosylation modification on the tumor microenvironment (TME) and omic features of glioma remains unclear. Differentially expressed glycosylation-related genes between adjacent and tumor tissues of The Cancer Genome Atlas and Chinese Glioma Genome Atlas datasets were identified. We performed unsupervised clustering to classify patients into different molecular phenotypes, and analyzed their TME heterogeneity, including immunocyte infiltration, immune pathways and tumor purity. Subsequently, we developed a prognostic predicting system named GlycoScore by stepwise least absolute shrinkage and selection operator-Cox regression to evaluate the modification pattern and its association with somatic mutation, clinical significance, immune fractions and drug resistance. Two clustering clusters were identified and presented distinct clinical outcomes and biological functions characterized by hotand cold tumors respectively. Patients with higher GlycoScores exhibited poor prognosis, less mutation counts, and were more sensitive to chemotherapeutics. We also confirmed that the GlycoScore severed as an independent risk factor. Cancer hallmarks such as cell cycle, hippo, and TGFß were active in the high-GlycoScore group. The combination of tumor mutation burden and the GlycoScore presented an excellent performance in prognostic stratification. Our study suggests that glycosylation is essential for modeling TME of glioma and the GlycoScore is a promising prognostic signature and indicator of immunotherapeutic efficacy.


Subject(s)
Glioma , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Glioma/genetics , Glioma/pathology , Glycosylation , Humans , Phenotype , Prognosis , Tumor Microenvironment/genetics
4.
Front Genet ; 13: 839884, 2022.
Article in English | MEDLINE | ID: mdl-35586564

ABSTRACT

Glioma is a malignancy with the highest mortality in central nervous system disorders. Here, we implemented the computational tools based on CRISPR/Cas9 to predict the clinical outcomes and biological characteristics of low-grade glioma (LGG). The transcriptional expression profiles and clinical phenotypes of LGG patients were retrieved from The Cancer Genome Atlas and Chinese Glioma Genome Atlas. The CERES algorithm was used to screen for LGG-lethal genes. Cox regression and random survival forest were adopted for survival-related gene selection. Nonnegative matrix factorization distinguished patients into different clusters. Single-sample gene set enrichment analysis was employed to create a novel CRISPR/Cas9 screening potential index (CCSPI), and patients were stratified into low- and high-CCSPI groups. Survival analysis, area under the curve values (AUCs), nomogram, and tumor microenvironment exploration were included for the model validation. A total of 20 essential genes in LGG were used to classify patients into two clusters and construct the CCSPI system. High-CCSPI patients were associated with a worse prognosis of both training and validation set (p < 0.0001) and higher immune fractions than low-CCSPI individuals. The CCSPI system had a promising performance with 1-, 3-, and 5-year AUCs of 0.816, 0.779, 0.724, respectively, and the C-index of the nomogram model reached 0.743 (95% CI = 0.725-0.760). Immune-infiltrating cells and immune checkpoints such as PD-1/PD-L1 and POLD3 were positively associated with CCSPI. In conclusion, the CCSPI had prognostic value in LGG, and the model will deepen our cognition of the interaction between the CNS and immune system in different LGG subtypes.

5.
Front Immunol ; 13: 934494, 2022.
Article in English | MEDLINE | ID: mdl-35911707

ABSTRACT

This study aims to investigate the immune and epigenetic mutational landscape of necroptosis in lung adenocarcinoma (LUAD), identify novel molecular phenotypes, and develop a prognostic scoring system based on necroptosis regulatory molecules for a better understanding of the tumor immune microenvironment (TIME) in LUAD. Based on the Cancer Genome Atlas and Gene Expression Omnibus database, a total of 29 overlapped necroptosis-related genes were enrolled to classify patients into different necroptosis phenotypes using unsupervised consensus clustering. We systematically correlated the phenotypes with clinical features, immunocyte infiltrating levels, and epigenetic mutation characteristics. A novel scoring system was then constructed, termed NecroScore, to quantify necroptosis of LUAD by principal component analysis. Three distinct necroptosis phenotypes were confirmed. Two clusters with high expression of necroptosis-related regulators were "hot tumors", while another phenotype with low expression was a "cold tumor". Molecular characteristics, including mutational frequency and types, copy number variation, and regulon activity differed significantly among the subtypes. The NecroScore, as an independent prognostic factor (HR=1.086, 95%CI=1.040-1.133, p<0.001), was able to predict the survival outcomes and show that patients with higher scores experienced a poorer prognosis. It could also evaluate the responses to immunotherapy and chemotherapeutic efficiency. In conclusion, necroptosis-related molecules are correlated with genome diversity in pan-cancer, playing a significant role in forming the TIME of LUAD. Necroptosis phenotypes can distinguish different TIME and molecular features, and the NecroScore is a promising biomarker for predicting prognosis, as well as immuno- and chemotherapeutic benefits in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , DNA Copy Number Variations , Humans , Lung Neoplasms/pathology , Necroptosis/genetics , Phenotype , Tumor Microenvironment/genetics
6.
Oxid Med Cell Longev ; 2022: 8297011, 2022.
Article in English | MEDLINE | ID: mdl-35313641

ABSTRACT

Purpose: This study is aimed at systematically analyzing the expression, function, and prognostic value of six transmembrane epithelial antigen of the prostate 1 (STEAP1) in various cancers. Methods: The expressions of STEAP1 between normal and tumor tissues were analyzed using TCGA and GTEx. Clinicopathologic data was collected from GEPIA and TCGA. Prognostic analysis was conducted by Cox proportional hazard regression and Kaplan-Meier survival. DNA methylation, mutation features, and molecular subtypes of cancers were also investigated. The top-100 coexpressed genes with STEAP1 were involved in functional enrichment analysis. ESTIMATE algorithm was used to analyze the correlation between STEAP1 and immunity value. The relationships of STEAP1 and biomarkers including tumor mutational burden (TMB), microsatellite instability (MSI), and stemness score as well as chemosensitivity were also illustrated. Results: Among 33 cancers, STEAP1 was overexpressed in 19 cancers such as cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), colon adenocarcinoma, and lymphoid neoplasm diffuse large B cell lymphoma while was downregulated in 5 cancers such as adrenocortical carcinoma, breast invasive carcinoma (BRCA), and kidney chromophobe renal cell carcinoma. STEAP1 has significant prognostic relationships in multiple cancers. 15 cancers exhibited differences of DNA methylation including bladder urothelial carcinoma, BRCA, and CESC. STEAP1 expression was positively correlated to immune molecules especially in thyroid carcinoma and negatively especially in uveal melanoma. STEAP1 was associated with TMB and MSI in certain cancers. In addition, STEAP1 was connected with increased chemosensitivity of drugs such as trametinib and pimasertib. Conclusions: STEAP1 was an underlying target for prognostic prediction in different cancer types and a potential biomarker of TMB, MSI, tumor microenvironment, and chemosensitivity.


Subject(s)
Antigens, Neoplasm , Carcinoma, Transitional Cell , Oxidoreductases , Urinary Bladder Neoplasms , Antigens, Neoplasm/metabolism , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/pathology , Humans , Oxidoreductases/metabolism , Prognosis , Tumor Microenvironment/genetics , Urinary Bladder Neoplasms/pathology
7.
Oxid Med Cell Longev ; 2022: 3665617, 2022.
Article in English | MEDLINE | ID: mdl-35281472

ABSTRACT

Background: Ovarian cancer (OC) is a malignancy exhibiting high mortality in female tumors. Glycosylation is a posttranslational modification of proteins but research has failed to demonstrate a systematic link between glycosylation-related signatures and tumor environment of OC. Purpose: This study is aimed at developing a novel model with glycosylation-related messenger RNAs (GRmRNAs) to predict the prognosis and immune function in OC patients. Methods: The transcriptional profiles and clinical phenotypes of OC patients were collected from the Gene Expression Omnibus and The Cancer Genome Atlas databases. A weighted gene coexpression network analysis and machine learning were performed to find the optimal survival-related GRmRNAs. Least absolute shrinkage and selection operator regression (LASSO) and Cox regression were carried out to calculate the coefficients of each GRmRNA and compute the risk score of each patient as well as develop a prognostic model. A nomogram model was constructed, and several algorithms were used to investigate the relationship between risk subtypes and immune-infiltrating levels. Results: A total of four signatures (ALG8, DCTN4, DCTN6, and UBB) were determined to calculate the risk scores, classifying patients into the high-and low-risk groups. High-risk patients exhibited significantly poorer survival outcomes, and the established nomogram model had a promising prediction for OC patients' prognosis. Tumor purity and tumor mutation burden were negatively correlated with risk scores. In addition, risk scores held statistical associations with pathway signatures such as Wnt, Hippo, and reactive oxygen species, and nonsynonymous mutation counts. Conclusion: The currently established risk scores based on GRmRNAs can accurately predict the prognosis, the immune microenvironment, and the immunotherapeutic efficacy of OC patients.


Subject(s)
Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Machine Learning/standards , Ovarian Neoplasms/genetics , Protein Processing, Post-Translational/genetics , Female , Glycosylation , Humans , Middle Aged , Ovarian Neoplasms/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL