Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Comput Methods Programs Biomed ; 211: 106406, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34536634

ABSTRACT

BACKGROUND AND OBJECTIVE: Given that the novel coronavirus disease 2019 (COVID-19) has become a pandemic, a method to accurately distinguish COVID-19 from community-acquired pneumonia (CAP) is urgently needed. However, the spatial uncertainty and morphological diversity of COVID-19 lesions in the lungs, and subtle differences with respect to CAP, make differential diagnosis non-trivial. METHODS: We propose a deep represented multiple instance learning (DR-MIL) method to fulfill this task. A 3D volumetric CT scan of one patient is treated as one bag and ten CT slices are selected as the initial instances. For each instance, deep features are extracted from the pre-trained ResNet-50 with fine-tuning and represented as one deep represented instance score (DRIS). Each bag with a DRIS for each initial instance is then input into a citation k-nearest neighbor search to generate the final prediction. A total of 141 COVID-19 and 100 CAP CT scans were used. The performance of DR-MIL is compared with other potential strategies and state-of-the-art models. RESULTS: DR-MIL displayed an accuracy of 95% and an area under curve of 0.943, which were superior to those observed for comparable methods. COVID-19 and CAP exhibited significant differences in both the DRIS and the spatial pattern of lesions (p<0.001). As a means of content-based image retrieval, DR-MIL can identify images used as key instances, references, and citers for visual interpretation. CONCLUSIONS: DR-MIL can effectively represent the deep characteristics of COVID-19 lesions in CT images and accurately distinguish COVID-19 from CAP in a weakly supervised manner. The resulting DRIS is a useful supplement to visual interpretation of the spatial pattern of lesions when screening for COVID-19.


Subject(s)
COVID-19 , Deep Learning , Pneumonia , Humans , Pneumonia/diagnostic imaging , SARS-CoV-2 , Tomography, X-Ray Computed
2.
Phys Med Biol ; 65(14): 145011, 2020 07 22.
Article in English | MEDLINE | ID: mdl-32235077

ABSTRACT

While many pre-defined computed tomographic (CT) measures have been utilized to characterize chronic obstructive pulmonary disease (COPD), it is still challenging to represent pathological alternations of multiple dimensions and highly spatial heterogeneity. Deep CNN transferred multiple instance learning (DCT-MIL) is proposed to identify COPD via CT images. After the lung is divided into eight sections along the axial direction, one random axial CT image is taken out from each section as one instance. With one instance as the input, the activations of neural layers of AlexNet trained by natural images are extracted as features. After dimension reduction through principle component analysis, features of all instances are input into three MIL methods: Citation k-Nearest-Neighbor (Citation-KNN), multiple instance support vector machine, and expectation-maximization diverse density. Moreover, the performance dependence of the resulted models on the depth of the neural layer where activations are extracted and the number of features is investigated. The proposed DCT-MIL achieves an exceptional performance with an accuracy of 99.29% and area under curve of 0.9826 while using 100 principle components of features extracted from the fourth convolutional layer and Citation-KNN. It outperforms not only DCT-MIL models using other settings and the pre-trained AlexNet with fine-tuning by montages of eight lung CT images, but also other state-of-art methods. Deep CNN transferred multiple instance learning is suited for identification of COPD using CT images. It can help finding subgroups with high risk of COPD from large populations through CT scans ordered doing lung cancer screening.


Subject(s)
Deep Learning , Image Processing, Computer-Assisted/methods , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Tomography, X-Ray Computed , Cluster Analysis , Humans , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL