Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Technol Health Care ; 32(S1): 329-337, 2024.
Article in English | MEDLINE | ID: mdl-38759059

ABSTRACT

BACKGROUND: Heart failure poses a significant challenge in the global health domain, and accurate prediction of mortality is crucial for devising effective treatment plans. In this study, we employed a Seq2Seq model from deep learning, integrating 12 patient features. By finely modeling continuous medical records, we successfully enhanced the accuracy of mortality prediction. OBJECTIVE: The objective of this research was to leverage the Seq2Seq model in conjunction with patient features for precise mortality prediction in heart failure cases, surpassing the performance of traditional machine learning methods. METHODS: The study utilized a Seq2Seq model in deep learning, incorporating 12 patient features, to intricately model continuous medical records. The experimental design aimed to compare the performance of Seq2Seq with traditional machine learning methods in predicting mortality rates. RESULTS: The experimental results demonstrated that the Seq2Seq model outperformed conventional machine learning methods in terms of predictive accuracy. Feature importance analysis provided critical patient risk factors, offering robust support for formulating personalized treatment plans. CONCLUSIONS: This research sheds light on the significant applications of deep learning, specifically the Seq2Seq model, in enhancing the precision of mortality prediction in heart failure cases. The findings present a valuable direction for the application of deep learning in the medical field and provide crucial insights for future research and clinical practices.


Subject(s)
Deep Learning , Heart Failure , Humans , Heart Failure/mortality , Female , Male , Aged , Middle Aged , Survival Rate , Risk Factors , Machine Learning
2.
Talanta ; 276: 126301, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38781915

ABSTRACT

Large-area two-dimensional (2D) materials possess significant potential in the development of next generation semiconductor due to their unique physicochemical properties. Confocal Raman spectroscopy (CRM), a typical 2D material characterization method, has a limited effective measurement area owing to the restricted focus depth of the system and the less-than-ideal level of the substrate. We propose fast adaptive focusing confocal Raman microscopy (FAFCRM) to realize real-time focusing detection for large-area 2D materials. By observing spot changes on the charge coupled device (CCD) caused by placing an aperture in front of the CCD, the methodology gives a focusing resolution up to 100 nm per 60 µm without axial scanning. A graphene was measured over 25.6 mm × 25.6 mm area on focus through all the scanning. The research results provide new perspectives for non-destructive characterization of 2D materials at the inch level.

3.
Clin Cardiol ; 47(4): e24270, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38628050

ABSTRACT

BACKGROUND: Earlier studies showed a negative correlation between life's simple 7 (LS7) and high-sensitivity C-reactive protein (hs-CRP), but no association has been found between life's essential 8 (LE8), an improved version of LS7, and hs-CRP. HYPOTHESIS: This study investigated the association between LE8 and hs-CRP utilizing data from the National Health and Nutritional Examination Survey. METHODS: A total of 7229 adults were incorporated in our study. LE8 was scored according to American Heart Association guidelines, and LE8 was divided into health behaviors and health factors. Serum samples of the participants were used to measure hs-CRP. To investigate the association between LE8 and hs-CRP, weighted linear regression, and restricted cubic spline were utilized. RESULTS: Among 7229 participants, the average age was 48.03 ± 16.88 years, 3689 (51.2%) were females and the median hs-CRP was 1.92 (0.81-4.49) mg/L. In adjusted weighted linear regression, a negative correlation was observed between the LE8 score and hs-CRP. Compared with the low LE8 score, the moderate LE8 score ß was -0.533 (-0.646 to -0.420), and the high LE8 score ß was -1.237 (-1.376 to -1.097). Health behaviors and health factors were also negatively associated with hs-CRP. In stratified analyses, the negative correlation between LE8 and hs-CRP remained consistent across subgroups. CONCLUSION: There was a negative correlation between LE8 as well as its sub-indicator scores and hs-CRP. Maintaining a positive LE8 score may be conducive to lowering the level of hs-CRP.


Subject(s)
C-Reactive Protein , Cardiovascular Diseases , United States/epidemiology , Adult , Female , Humans , Middle Aged , Male , Cross-Sectional Studies , Nutrition Surveys , American Heart Association , Linear Models , Risk Factors
4.
Nat Commun ; 15(1): 5799, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987544

ABSTRACT

Germ granules are biomolecular condensates present in most animal germ cells. One function of germ granules is to help maintain germ cell totipotency by organizing mRNA regulatory machinery, including small RNA-based gene regulatory pathways. The C. elegans germ granule is compartmentalized into multiple subcompartments whose biological functions are largely unknown. Here, we identify an uncharted subcompartment of the C. elegans germ granule, which we term the E granule. The E granule is nonrandomly positioned within the germ granule. We identify five proteins that localize to the E granule, including the RNA-dependent RNA polymerase (RdRP) EGO-1, the Dicer-related helicase DRH-3, the Tudor domain-containing protein EKL-1, and two intrinsically disordered proteins, EGC-1 and ELLI-1. Localization of EGO-1 to the E granule enables synthesis of a specialized class of 22G RNAs, which derive exclusively from 5' regions of a subset of germline-expressed mRNAs. Defects in E granule assembly elicit disordered production of endogenous siRNAs, which disturbs fertility and the RNAi response. Our results define a distinct subcompartment of the C. elegans germ granule and suggest that one function of germ granule compartmentalization is to facilitate the localized production of specialized classes of small regulatory RNAs.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Cytoplasmic Granules , Germ Cells , Caenorhabditis elegans/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/genetics , Animals , Germ Cells/metabolism , Cytoplasmic Granules/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , RNA-Dependent RNA Polymerase/metabolism , RNA-Dependent RNA Polymerase/genetics , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL