Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 196
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 19(6): 547-560, 2018 06.
Article in English | MEDLINE | ID: mdl-29777223

ABSTRACT

The adaptor CARD9 functions downstream of C-type lectin receptors (CLRs) for the sensing of microbial infection, which leads to responses by the TH1 and TH17 subsets of helper T cells. The single-nucleotide polymorphism rs4077515 at CARD9 in the human genome, which results in the substitution S12N (CARD9S12N), is associated with several autoimmune diseases. However, the function of CARD9S12N has remained unknown. Here we generated CARD9S12N knock-in mice and found that CARD9S12N facilitated the induction of type 2 immune responses after engagement of CLRs. Mechanistically, CARD9S12N mediated CLR-induced activation of the non-canonical transcription factor NF-κB subunit RelB, which initiated production of the cytokine IL-5 in alveolar macrophages for the recruitment of eosinophils to drive TH2 cell-mediated allergic responses. We identified the homozygous CARD9 mutation encoding S12N in patients with allergic bronchopulmonary aspergillosis and revealed activation of RelB and production of IL-5 in peripheral blood mononuclear cells from these patients. Our study provides genetic and functional evidence demonstrating that CARD9S12N can turn alveolar macrophages into IL-5-producing cells and facilitates TH2 cell-mediated pathologic responses.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary/immunology , CARD Signaling Adaptor Proteins/immunology , Interleukin-5/biosynthesis , Macrophages, Alveolar/immunology , Th2 Cells/immunology , Animals , Aspergillosis, Allergic Bronchopulmonary/genetics , CARD Signaling Adaptor Proteins/genetics , Humans , Interleukin-5/immunology , Macrophages, Alveolar/metabolism , Mice , Polymorphism, Single Nucleotide , Signal Transduction/immunology
2.
Mol Ther ; 32(8): 2641-2661, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38822526

ABSTRACT

Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.


Subject(s)
Autophagy , Ferroptosis , Zika Virus Infection , Zika Virus , alpha7 Nicotinic Acetylcholine Receptor , Animals , Humans , Mice , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Cell Line , Disease Models, Animal , Viral Load , Zika Virus/physiology , Zika Virus Infection/virology , Zika Virus Infection/metabolism
3.
Mol Pain ; 20: 17448069241239231, 2024.
Article in English | MEDLINE | ID: mdl-38417838

ABSTRACT

Cancer-induced bone pain (CIBP) is one of the most common and feared symptoms in patients with advanced tumors. The X-C motif chemokine ligand 12 (CXCL12) and the CXCR4 receptor have been associated with glial cell activation in bone cancer pain. Moreover, mitogen-activated protein kinases (MAPKs), as downstream CXCL12/CXCR4 signals, and c-Jun, as activator protein AP-1 components, contribute to the development of various types of pain. However, the specific CIBP mechanisms remain unknown. Esketamine is a non-selective N-methyl-d-aspartic acid receptor (NMDA) inhibitor commonly used as an analgesic in the clinic, but its analgesic mechanism in bone cancer pain remains unclear. We used a tumor cell implantation (TCI) model and explored that CXCL12/CXCR4, p-MAPKs, and p-c-Jun were stably up-regulated in the spinal cord. Immunofluorescence images showed activated microglia in the spinal cord on day 14 after TCI and co-expression of CXCL12/CXCR4, p-MAPKs (p-JNK, p-ERK, p-p38 MAPK), and p-c-Jun in microglia. Intrathecal injection of the CXCR4 inhibitor AMD3100 reduced JNK and c-Jun phosphorylations, and intrathecal injection of the JNK inhibitor SP600125 and esketamine also alleviated TCI-induced pain and reduced the expression of p-JNK and p-c-Jun in microglia. Overall, our data suggest that the CXCL12/CXCR4-JNK-c-Jun signaling pathway of microglia in the spinal cord mediates neuronal sensitization and pain hypersensitivity in cancer-induced bone pain and that esketamine exerts its analgesic effect by inhibiting the JNK-c-Jun pathway.


Subject(s)
Bone Neoplasms , Cancer Pain , Ketamine , Humans , Rats , Animals , Cancer Pain/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Rats, Sprague-Dawley , Pain/metabolism , Bone Neoplasms/complications , Spinal Cord/metabolism , Mitogen-Activated Protein Kinases/metabolism , Spinal Cord Dorsal Horn/metabolism , Analgesics/pharmacology , Hyperalgesia/metabolism
4.
Eur Respir J ; 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-39467608

ABSTRACT

Persistent neutrophilic inflammation is a central feature in both the pathogenesis and progression of bronchiectasis (BE). Neutrophils release neutrophil serine proteases (NSPs), such as neutrophil elastase, cathepsin G and proteinase 3. When chronically high levels of free NSP activity exceed those of protective antiproteases, structural lung destruction, mucosal-related defects, further susceptibility to infection and worsening of clinical outcomes can occur. Despite the defined role of prolonged, high levels of NSPs in BE, no drug that controls neutrophilic inflammation is licensed for the treatment of BE. Previous methods of suppressing neutrophilic inflammation (such as direct inhibition of neutrophil elastase) have not been successful; however, an emerging therapy designed to address neutrophil-mediated pathology, inhibition of the cysteine protease cathepsin C (CatC, also known as dipeptidyl peptidase 1), is a promising approach to ameliorate neutrophilic inflammation, since this may reduce the activity of all NSPs implicated in BE pathogenesis, and not just neutrophil elastase. Current data suggest that CatC inhibition may effectively restore the protease-antiprotease balance in BE and improve disease outcomes as a result. Clinical trials for CatC inhibitors in BE have reported positive Phase III results. In this narrative review, we discuss the role of high NSP activity in BE, and how this feature drives the associated morbidity and mortality seen in BE. This review discusses therapeutic approaches aimed at treating neutrophilic inflammation in the BE lung, summarising clinical trial outcomes, and highlighting the need for more treatment strategies that effectively address chronic neutrophilic inflammation in BE.

5.
Eur Respir J ; 63(5)2024 May.
Article in English | MEDLINE | ID: mdl-38514095

ABSTRACT

INTRODUCTION: Patients with allergic bronchopulmonary aspergillosis (ABPA) suffer from repeated exacerbations. The involvement of T-cell subsets remains unclear. METHODS: We enrolled ABPA patients, asthma patients and healthy controls. T-helper type 1 (Th1), 2 (Th2) and 17 (Th17) cells, regulatory T-cells (Treg) and interleukin (IL)-21+CD4+T-cells in total or sorted subsets of peripheral blood mononuclear cells and ABPA bronchoalveolar lavage fluid (BALF) were analysed using flow cytometry. RNA sequencing of subsets of CD4+T-cells was done in exacerbated ABPA patients and healthy controls. Antibodies of T-/B-cell co-cultures in vitro were measured. RESULTS: ABPA patients had increased Th2 cells, similar numbers of Treg cells and decreased circulating Th1 and Th17 cells. IL-5+IL-13+IL-21+CD4+T-cells were rarely detected in healthy controls, but significantly elevated in the blood of ABPA patients, especially the exacerbated ones. We found that IL-5+IL-13+IL-21+CD4+T-cells were mainly peripheral T-helper (Tph) cells (PD-1+CXCR5-), which also presented in the BALF of ABPA patients. The proportions of circulating Tph cells were similar among ABPA patients, asthma patients and healthy controls, while IL-5+IL-13+IL-21+ Tph cells significantly increased in ABPA patients. Transcriptome data showed that Tph cells of ABPA patients were Th2-skewed and exhibited signatures of follicular T-helper cells. When co-cultured in vitro, Tph cells of ABPA patients induced the differentiation of autologous B-cells into plasmablasts and significantly enhanced the production of IgE. CONCLUSION: We identified a distinctly elevated population of circulating Th2-skewed Tph cells that induced the production of IgE in ABPA patients. It may be a biomarker and therapeutic target for ABPA.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , B-Lymphocytes , Bronchoalveolar Lavage Fluid , Th2 Cells , Humans , Male , Female , Aspergillosis, Allergic Bronchopulmonary/immunology , Adult , Th2 Cells/immunology , Middle Aged , Case-Control Studies , B-Lymphocytes/immunology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , T-Lymphocytes, Regulatory/immunology , Asthma/immunology , Th17 Cells/immunology , T-Lymphocytes, Helper-Inducer/immunology
6.
J Med Virol ; 96(7): e29768, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38978388

ABSTRACT

The vagus nerve circuit, operating through the alpha-7 nicotinic acetylcholine receptor (α7 nAChR), regulates the inflammatory response by influencing immune cells. However, the role of vagal-α7 nAChR signaling in influenza virus infection is unclear. In particular, does vagal-α7 nAChR signaling impact the infection of alveolar epithelial cells (AECs), the primary target cells of influenza virus? Here, we demonstrated a distinct role of α7 nAChR in type II AECs compared to its role in immune cells during influenza infection. We found that deletion of Chrna7 (encoding gene of α7 nAChR) in type II AECs or disruption of vagal circuits reduced lung influenza infection and protected mice from influenza-induced lung injury. We further unveiled that activation of α7 nAChR enhanced influenza infection through PTP1B-NEDD4L-ASK1-p38MAPK pathway. Mechanistically, activation of α7 nAChR signaling decreased p38MAPK phosphorylation during infection, facilitating the nuclear export of influenza viral ribonucleoproteins and thereby promoting infection. Taken together, our findings reveal a mechanism mediated by vagal-α7 nAChR signaling that promotes influenza viral infection and exacerbates disease severity. Targeting vagal-α7 nAChR signaling may offer novel strategies for combating influenza virus infections.


Subject(s)
Lung , Orthomyxoviridae Infections , Signal Transduction , Vagus Nerve , alpha7 Nicotinic Acetylcholine Receptor , Animals , alpha7 Nicotinic Acetylcholine Receptor/metabolism , alpha7 Nicotinic Acetylcholine Receptor/genetics , Vagus Nerve/metabolism , Mice , Orthomyxoviridae Infections/virology , Lung/virology , Lung/pathology , Mice, Inbred C57BL , Alveolar Epithelial Cells/virology , Alveolar Epithelial Cells/metabolism , Humans , Mice, Knockout
7.
Ann Allergy Asthma Immunol ; 133(2): 168-176.e1, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38777120

ABSTRACT

BACKGROUND: Allergic bronchopulmonary aspergillosis (ABPA) is characterized by enhanced TH2 inflammatory response. Fractional exhaled nitric oxide (FeNO) measurement has been used as a valuable tool in predicting the development and management of asthma, another typical TH2 inflammation. However, the clinical significance of FeNO in ABPA remains unclear. OBJECTIVE: To investigate the association between FeNO and the prognosis of patients with ABPA to provide a basis for the use of FeNO in evaluating the efficacy of glucocorticoids in ABPA treatment. METHODS: This study comprised 2 parts; 58 patients were enrolled in the retrospective study. Clinical indexes in patients with different prognoses were compared, and receiver operating characteristic curve analysis was used to determine the threshold value. The prospective observational study involved 61 patients who were regularly followed up at 4 to 6 weeks and 6 months since the initial treatment. Patients were grouped on the basis of baseline FeNO values; correlation analysis was performed in the clinical data. RESULTS: Different prognoses were observed between patients with high and low baseline FeNO values, with a threshold value of 57 parts per billion. The percentage of Aspergillus fumigatus-specific IgE, percentage of positive A fumigatus-specific IgG, and relapse/exacerbation rate differed significantly between the high and low FeNO groups. Patients with higher FeNO needed longer treatment duration and showed shorter interval between glucocorticoid withdrawal and the next relapse/exacerbation. CONCLUSION: Our findings indicate that the level of FeNO is associated with the prognosis of ABPA. It can serve as an independent and valuable biomarker for evaluating the effectiveness of glucocorticoid treatment.


Subject(s)
Aspergillosis, Allergic Bronchopulmonary , Aspergillus fumigatus , Biomarkers , Glucocorticoids , Nitric Oxide , Humans , Aspergillosis, Allergic Bronchopulmonary/drug therapy , Aspergillosis, Allergic Bronchopulmonary/diagnosis , Female , Male , Glucocorticoids/therapeutic use , Adult , Prognosis , Biomarkers/analysis , Nitric Oxide/analysis , Nitric Oxide/metabolism , Aspergillus fumigatus/immunology , Middle Aged , Retrospective Studies , Immunoglobulin E/blood , Prospective Studies , Fractional Exhaled Nitric Oxide Testing , Immunoglobulin G
8.
Clin Exp Pharmacol Physiol ; 51(1): 10-16, 2024 01.
Article in English | MEDLINE | ID: mdl-37806661

ABSTRACT

Bronchoscopic lung volume reduction (BLVR) is a feasible, safe, effective and minimally invasive technique to significantly improve the quality of life of advanced severe chronic obstructive pulmonary disease (COPD). In this study, three-dimensional computed tomography (3D-CT) automatic analysis software combined with pulmonary function test (PFT) was used to retrospectively evaluate the postoperative efficacy of BLVR patients. The purpose is to evaluate the improvement of lung function of local lung tissue after operation, maximize the benefits of patients, and facilitate BLVR in the treatment of patients with advanced COPD. All the reported cases of advanced COPD patients treated with BLVR with one-way valve were collected and analysed from 2017 to 2020. Three-dimensional-CT image analysis software system was used to analyse the distribution of low-density areas <950 Hounsfield units in both lungs pre- and post- BLVR. Meanwhile, all patients performed standard PFT pre- and post-operation for retrospective analysis. We reported six patients that underwent unilateral BLVR with 1 to 3 valves according to the range of emphysema. All patients showed a median increase in forced expiratory volume in 1 second (FEV1) of 34%, compared with baseline values. Hyperinflation was reduced by 16.6% (range, 4.9%-47.2%). The volumetric measurements showed a significant reduction in the treated lobe volume among these patients. Meanwhile, the targeted lobe volume changes were inversely correlated with change in FEV1/FEV1% in patients with heterogeneous emphysematous. We confirm that 3D-CT analysis can quantify the changes of lung volume, ventilation and perfusion, to accurately evaluate the distribution and improvement of emphysema and rely less on the observer.


Subject(s)
Emphysema , Pulmonary Disease, Chronic Obstructive , Pulmonary Emphysema , Humans , Pneumonectomy/adverse effects , Pneumonectomy/methods , Retrospective Studies , Quality of Life , Lung/diagnostic imaging , Lung/surgery , Pulmonary Emphysema/diagnostic imaging , Pulmonary Emphysema/surgery , Pulmonary Emphysema/etiology , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Pulmonary Disease, Chronic Obstructive/surgery , Emphysema/diagnostic imaging , Emphysema/surgery , Emphysema/etiology , Tomography, X-Ray Computed/methods , Treatment Outcome
9.
BMC Pulm Med ; 24(1): 240, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750544

ABSTRACT

BACKGROUND: Previous research has emphasized the potential benefits of anti-diabetic medications in inhibiting the exacerbation of Chronic Obstructive Pulmonary Disease (COPD), yet the role of anti-diabetic drugs on COPD risk remains uncertain. METHODS: This study employed a Mendelian randomization (MR) approach to evaluate the causal association of genetic variations related to six classes of anti-diabetic drug targets with COPD. The primary outcome for COPD was obtained from the Global Biobank Meta-analysis Initiative (GBMI) consortium, encompassing a meta-analysis of 12 cohorts with 81,568 cases and 1,310,798 controls. Summary-level data for HbA1c was derived from the UK Biobank, involving 344,182 individuals. Positive control analysis was conducted for Type 2 Diabetes Mellitus (T2DM) to validate the choice of instrumental variables. The study applied Summary-data-based MR (SMR) and two-sample MR for effect estimation and further adopted colocalization analysis to verify evidence of genetic variations. RESULTS: SMR analysis revealed that elevated KCNJ11 gene expression levels in blood correlated with reduced COPD risk (OR = 0.87, 95% CI = 0.79-0.95; p = 0.002), whereas an increase in DPP4 expression corresponded with an increased COPD incidence (OR = 1.18, 95% CI = 1.03-1.35; p = 0.022). Additionally, the primary method within MR analysis demonstrated a positive correlation between PPARG-mediated HbA1c and both FEV1 (OR = 1.07, 95% CI = 1.02-1.13; P = 0.013) and FEV1/FVC (OR = 1.08, 95% CI = 1.01-1.14; P = 0.007), and a negative association between SLC5A2-mediated HbA1c and FEV1/FVC (OR = 0.86, 95% CI = 0.74-1.00; P = 0.045). No colocalization evidence with outcome phenotypes was detected (all PP.H4 < 0.7). CONCLUSION: This study provides suggestive evidence for anti-diabetic medications' role in improving COPD and lung function. Further updated MR analyses are warranted in the future, following the acquisition of more extensive and comprehensive data, to validate our results.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Mendelian Randomization Analysis , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/drug therapy , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Glycated Hemoglobin , Potassium Channels, Inwardly Rectifying/genetics , Genetic Variation , Polymorphism, Single Nucleotide , Risk Factors
10.
Aging Clin Exp Res ; 36(1): 205, 2024 Oct 12.
Article in English | MEDLINE | ID: mdl-39395132

ABSTRACT

BACKGROUND: Sarcopenia (SP) is an aging-related loss of muscle mass and function, affecting the respiratory system. However, the causality of the association between sarcopenia on lung diseases remains elusive. METHODS: The bidirectional univariate Mendelian randomization (UVMR), multivariate MR (MVMR) analysis, and mediation MR were utilized to systematically investigate the genetic causal relationship of SP and 11 respiratory diseases. Independent genomic variants related to sarcopenia or respiratory diseases were identified as instrumental variables (IVs), and the summary level data of genome-wide associated studies (GWAS) were obtained from the UK biobank and FinnGen. MVMR analysis was conducted to explore the mediation effects of body mass index (BMI), Alcohol Use Disorders Identification Test (AUDIT), smoking, education attainment (EA), physical activity, and Type 2 Diabetes Mellitus (T2DM). RESULTS: Forward UVMR analysis based on the primary method revealed that pneumoconiosis was associated with a higher risk of appendicular lean mass (ALM) (OR = 1.01, p = 0.03), and BMI (10.65%), smoking (10.65%), and physical activity (17.70%) had a mediating role in the effect of pneumoconiosis on ALM. In reverse MR analysis, we found that genetically predicted ALM was significantly associated with an increased risk of pulmonary embolism (PE) (OR = 1.24, p = 7.21E-05). Chronic obstructive pulmonary disease (COPD) (OR = 0.98, p = 0.002) and sarcoidosis (OR = 1.01, p = 0.004) were identified to increase the loss of left-hand grip strength (HGS). Conversely, the increase in left- HGS presented a protective effect on chronic bronchitis (CB) (OR = 0.35, p = 0.03), (OR = 0.80, p = 0.02), and asthma (OR = 0.78, p = 0.04). Similarly, the loss of the right-HGS elevated the risk of low respiratory tract infection (LRTI) (OR = 0.97, p = 0.02) and bronchiectasis (OR = 1.01, p = 0.03), which is also an independent protective factor for LRTI and asthma. In the aspects of low HGS, the risk of LRTI was increased after MVMR analysis, and the risk of sarcoidosis and pneumoconiosis was elevated in the reverse analysis. Lastly, asthma was found to be related to the loss of the usual walking pace, and the reverse MR analysis suggested a causal relationship between the usual walking pace and LRTI (OR = 0.32, p = 2.79 × 10-5), asthma (OR = 0.24, p = 2.09 × 10-6), COPD (OR = 0.22, p = 6.64 × 10-4), and PE(OR = 0.35, p = 0.03). CONCLUSIONS: This data-driven MR analysis revealed SP was bidirectional causally associated with lung diseases, providing genetic evidence for further mechanistic and clinical studies to understand the crosstalk between SP and lung diseases.


Subject(s)
Mendelian Randomization Analysis , Sarcopenia , Humans , Sarcopenia/genetics , Genome-Wide Association Study , Body Mass Index , Respiratory Tract Diseases/genetics , Respiratory Tract Diseases/epidemiology , Male , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/physiopathology , Pulmonary Disease, Chronic Obstructive/epidemiology , Female , Smoking , Pneumoconiosis/genetics , Pneumoconiosis/epidemiology , Pneumoconiosis/physiopathology
11.
Cancer Sci ; 114(2): 449-462, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36285479

ABSTRACT

Breast cancer is among the most common malignant cancers in women. B-cell-specific Moloney murine leukemia virus integration site 1 (BMI-1) is a transcriptional repressor that has been shown to be involved in tumorigenesis, the cell cycle, and stem cell maintenance. In our study, increased expression of BMI-1 was found in both human triple negative breast cancer and luminal A-type breast cancer tissues compared with adjacent tissues. We also found that knockdown of BMI-1 significantly suppressed cell proliferation and migration in vitro and in vivo. Further mechanistic research demonstrated that BMI-1 directly bound to the promoter region of CDKN2D/BRCA1 and inhibited its transcription in MCF-7/MDA-MB-231. More importantly, we discovered that knockdown of CDKN2D/BRCA1 could promote cell proliferation and migration after repression by PTC-209. Our results reveal that BMI-1 transcriptionally suppressed BRCA1 in TNBC cell lines whereas, in luminal A cell lines, CDKN2D was the target gene. This provides a reference for the precise treatment of different types of breast cancer in clinical practice.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Mice , Humans , Female , Body Mass Index , Triple Negative Breast Neoplasms/metabolism , Transcription Factors/genetics , Cell Line , Cell Proliferation/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
12.
PLoS Pathog ; 17(3): e1009401, 2021 03.
Article in English | MEDLINE | ID: mdl-33720974

ABSTRACT

The cytosolic DNA sensor cyclic GMP-AMP (cGAMP) synthetase (cGAS) has emerged as a fundamental component fueling the anti-pathogen immunity. Because of its pivotal role in initiating innate immune response, the activity of cGAS must be tightly fine-tuned to maintain immune homeostasis in antiviral response. Here, we reported that neddylation modification was indispensable for appropriate cGAS-STING signaling activation. Blocking neddylation pathway using neddylation inhibitor MLN4924 substantially impaired the induction of type I interferon and proinflammatory cytokines, which was selectively dependent on Nedd8 E2 enzyme Ube2m. We further found that deficiency of the Nedd8 E3 ligase Rnf111 greatly attenuated DNA-triggered cGAS activation while not affecting cGAMP induced activation of STING, demonstrating that Rnf111 was the Nedd8 E3 ligase of cGAS. By performing mass spectrometry, we identified Lys231 and Lys421 as essential neddylation sites in human cGAS. Mechanistically, Rnf111 interacted with and polyneddylated cGAS, which in turn promoted its dimerization and enhanced the DNA-binding ability, leading to proper cGAS-STING pathway activation. In the same line, the Ube2m or Rnf111 deficiency mice exhibited severe defects in innate immune response and were susceptible to HSV-1 infection. Collectively, our study uncovered a vital role of the Ube2m-Rnf111 neddylation axis in promoting the activity of the cGAS-STING pathway and highlighted the importance of neddylation modification in antiviral defense.


Subject(s)
Immunity, Innate/immunology , Nucleotidyltransferases/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Virus Diseases/immunology , Animals , Humans , Mice , Protein Processing, Post-Translational , Signal Transduction/immunology
13.
14.
Respir Res ; 24(1): 84, 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36934266

ABSTRACT

BACKGROUND: Nearly half of bronchiectasis patients receiving bronchial artery embolization (BAE) still have recurrent hemoptysis, which may be life-threatening. Worse still, the underlying risk factors of recurrence remain unknown. METHODS: A retrospective cohort was conducted of patients with idiopathic bronchiectasis who received BAE from 2015 to 2019 at eight centers. Patients were followed up for at least 24 months post BAE. Based on the outcomes of recurrent hemoptysis and recurrent severe hemoptysis, a Cox regression model was used to identify risk factors for recurrence. RESULTS: A total of 588 individuals were included. The median follow-up period was 34.0 months (interquartile range: 24.3-53.3 months). The 1-month, 1-year, 2-year, and 5-year cumulative recurrent hemoptysis-free rates were 87.2%, 67.5%, 57.6%, and 49.4%, respectively. The following factors were relative to recurrent hemoptysis: 24-h sputum volume (hazard ratio [HR] = 1.99 [95% confidence interval [95% CI]: 1.25-3.15, p = 0.015]), isolation of Pseudomonas aeruginosa (HR = 1.50 [95% CI: 1.13-2.00, p = 0.003]), extensive bronchiectasis (HR = 2.00 [95% CI: 1.29-3.09, p = 0.002]), and aberrant bronchial arteries (AbBAs) (HR = 1.45 [95% CI: 1.09-1.93, p = 0.014]). The area under the receiver operating characteristic curve of the nomogram was 0.728 [95% CI: 0.688-0.769]. CONCLUSIONS: Isolation of Pseudomonas aeruginosa is an important independent predictor of recurrent hemoptysis. The clearance of Pseudomonas aeruginosa might effectively reduce the hemoptysis recurrence rate.


Subject(s)
Bronchiectasis , Embolization, Therapeutic , Humans , Bronchial Arteries , Pseudomonas aeruginosa , Retrospective Studies , Recurrence , Hemoptysis/diagnosis , Hemoptysis/therapy , Embolization, Therapeutic/adverse effects , Bronchiectasis/diagnosis , Bronchiectasis/therapy , Treatment Outcome
15.
Eur J Clin Microbiol Infect Dis ; 42(2): 141-152, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36469164

ABSTRACT

The aim of this study was to explore the potential mechanisms responsible for the different manifestations of bronchiectasis in patients with pulmonary non-tuberculous mycobacteria (pNTM) infection. We found that the necroptosis level increased significantly after NTM infection. Further, the 31 pNTM-infected patients were classified into two subtypes based on necroptosis-related genes (NRGs) by unsupervised cluster analysis. After that, we compared the differences in clinical parameters, immune cell infiltration, and gene expression between the two subtypes. We observed that the high-necroptosis subtype possessed higher CT scores for bronchiectasis extent (P = 0.008) and severity (P = 0.023). And, more neutrophil infiltration in the high-necroptosis subtype was demonstrated both by the CIBERSORT algorithm and by blood neutrophil count (P = 0.001). Next, 688 differentially expressed genes (DEGs) between two subtypes were identified. To explore the portion in DEGs that might contribute to bronchiectasis, we intersected the DEGs with two gene modules. These two gene modules were identified as the most associated with CT scores for bronchiectasis extent and severity by weighted gene co-expression network analysis (WGCNA). Ninety-three intersection genes were obtained. Finally, 7 hub genes including ACSL1, ANXA3, DYSF, HK3, SLC11A1, STX11, and TLR4 were further screened out by machine learning algorithms and protein-protein interaction network analysis. These results suggested that the differential levels of necroptosis in pNTM patients might lead to differential extent and severity of bronchiectasis on radiographic imaging. This process might be associated with neutrophil infiltration and the involvement of seven hub genes.


Subject(s)
Bronchiectasis , Necroptosis , Humans , Transcriptome , Bronchiectasis/complications , Bronchiectasis/genetics , Algorithms , Nontuberculous Mycobacteria
16.
Ecotoxicol Environ Saf ; 255: 114827, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36965276

ABSTRACT

Despite the rapidly growing interest in nanoparticle-mediated controllable male contraception and recovery of male fertility, novel applications of nanoparticles in these processes are limited by a knowledge gap regarding their transport and distribution in the testes. Here, we investigated the fate of gold nanoparticles in the mouse testes using two injection methods, namely, interstitial testicular injection (IT-AuNPs, AuNPs exposure in the interstitial compartment of the testes) and rete testis injection (RT-AuNPs, AuNPs exposure in the adluminal compartment of the seminiferous tubules). In this study, we used 100 nm spherical AuNPs and microinjected with 5 µL AuNPs (30 mg/mL) for the experiments. For IT-AuNP injection, we found that AuNPs could not penetrate through the Sertoli cell-mediated blood-testis barrier (BTB) of the seminiferous tubules, and no male reproductive toxicity was observed. For RT-AuNP injection, AuNPs could be retrogradely transported from the adluminal compartment to the interstitial compartment of the testes via Sertoli cell-mediated endocytosis/exocytosis, resulting in damage and the release of inflammatory cytokines in the mouse testis. Our results highlight a retrograde nanoparticle transport function of Sertoli cells, thereby providing a mechanistic overview of the development and use of nanobiotechnology in male reproduction. SYNOPSIS: This study provides new insights into male reproductive immunotoxicity for AuNPs exposure and elucidates a mechanism via Sertoli cell-mediated endocytosis/exocytosis.


Subject(s)
Metal Nanoparticles , Testis , Male , Mice , Animals , Testis/physiology , Sertoli Cells , Gold/toxicity , Metal Nanoparticles/toxicity , Endocytosis , Immunity
17.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445996

ABSTRACT

This study aimed to design a novel mouse model of chronic photoaging. We used three different species of mice (C57BL/6J, ICR, and KM) to create a chronic photoaging model of the skin. The irradiation time was gradually increased for 40 consecutive days. The skins of the mice were removed on day 41 and subjected to staining to observe them for morphological changes. Immunohistochemistry was used to detect tumor necrosis factor-α (TNF-α) and p53 expression; superoxide dismutase (SOD) and malondialdehyde (MDA) were measured as well. Compared with C57BL/J mice, which showed hyperpigmentation, the irradiated skin of ICR and KM mice showed more obvious skin thickening and photoaging changes of the collagen and elastic fibers. KM mice had higher levels of inflammation, oxidative stress, and senescent cells. Compared with the 5-month-old KM mice, the photoaging changes of the 9-month-old KM mice were more pronounced, the SOD values were lower, and the MDA values were higher. In summary, KM mice have higher levels of abnormal elastic fibers, inflammation, cellular senescence, and oxidative stress than ICR mice, and are more suitable for studies related to chronic skin photoaging. C57BL/6J mice were found to be suitable for studies related to skin pigmentation due to photoaging.


Subject(s)
Skin Aging , Mice , Animals , Mice, Inbred C57BL , Mice, Inbred ICR , Skin/metabolism , Superoxide Dismutase/metabolism , Ultraviolet Rays/adverse effects
18.
Biochem Biophys Res Commun ; 601: 1-8, 2022 04 23.
Article in English | MEDLINE | ID: mdl-35219000

ABSTRACT

Prostate cancer (PCa) is a malignant epithelial tumor with a high rate of biochemical or local recurrence. Studies have suggested that LINC00624 plays an important oncogenic role in liver cancer. However, whether it exerts similar effects in PCa progression remains unknown. In this study, we explored the effects of LINC00624 on the malignant progression of PCa and sought to identify the relevant signaling pathways. The results showed that LINC00624 was highly expressed in PCa tissues and cells and was associated with poor prognosis in PCa patients. In vitro and in vivo assays further showed that LINC00624 knockdown could decrease the proliferative and migratory ability of PCa cells. Mechanistically, we found that LINC00624 and TEX10 formed a co-regulatory axis that stimulated NF-κB activity. Our data suggest that LINC00624 acts as an oncogene in PCa progression and has potential as a novel biomarker for PCa.


Subject(s)
NF-kappa B , Nuclear Proteins , Prostatic Neoplasms , RNA, Long Noncoding , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Humans , Male , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Oncogenes , Prostatic Neoplasms/pathology , RNA, Long Noncoding/metabolism , Signal Transduction
19.
Respir Res ; 23(1): 380, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36575527

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a progressive disorder that causes airway obstruction and lung inflammation. The first-line treatment of COPD is the bronchodilators of ß2-agonists and antimuscarinic drugs, which can help control the airway obstruction, but the long-term use might render the drug tolerance. Bisphosphonates are widely used in osteoclast-mediated bone diseases treatment for decades. For drug repurposing, can delivery of a third generation of nitrogen-containing bisphosphonate, risedronate (RIS) ameliorate the progression of COPD? METHODS: COPD rats or mice models have been established through cigarette-smoking and elastase injection, and then the animals are received RIS treatment via nebulization. Lung deposition of RIS was primarily assessed by high-performance liquid chromatography (HPLC). The respiratory parameters of airway obstruction in COPD rats and mice were documented using plethysmography method and resistance-compliance system. RESULTS: High lung deposition and bioavailability of RIS was monitored with 88.8% of RIS input dose. We found that RIS could rescue the lung function decline of airspace enlargement and mean linear intercept in the COPD lung. RIS could curb the airway obstruction by suppressing 60% of the respiratory resistance and elevating the airway's dynamic compliance, tidal volume and mid-expiratory flow. As an inhibitor of farnesyl diphosphate synthase (FDPS), RIS suppresses FDPS-mediated RAS and RhoA prenylation to obstruct its membrane localization in airway smooth muscle cells (ASMCs), leading to the inhibition of downstream ERK-MLCK and ROCK1-MLCP pathway to cause ASMCs relaxation. Additionally, RIS nebulization impeded pro-inflammatory cell accumulation, particularly macrophages infiltration in alveolar parenchyma. The NF-κB, tumor necrosis factor-alpha, IL-1ß, IL-8, and IL-6 declined in microphages following RIS nebulization. Surprisingly, nebulization of RIS could overcome the tolerance of ß2-agonists in COPD-rats by increasing the expression of ß2 receptors. CONCLUSIONS: Nebulization of RIS could alleviate airway obstruction and lung inflammation in COPD, providing a novel strategy for treating COPD patients, even those with ß2-agonists tolerance.


Subject(s)
Airway Obstruction , Pulmonary Disease, Chronic Obstructive , Rats , Mice , Animals , NF-kappa B/metabolism , Risedronic Acid/therapeutic use , Lung/metabolism , Inflammation/metabolism , Prenylation , rho-Associated Kinases/metabolism
20.
Respir Res ; 23(1): 317, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36403022

ABSTRACT

BACKGROUND: Emerging experimental and epidemiological evidence highlights a crucial cross-talk between the intestinal flora and the lungs, termed the "gut-lung axis". However, the function of the gut microbiota in bronchiectasis remains undefined. In this study, we aimed to perform a multi-omics-based approach to identify the gut microbiome and metabolic profiles in patients with bronchiectasis. METHODS: Fecal samples collected from non-CF bronchiectasis patients (BE group, n = 61) and healthy volunteers (HC group, n = 37) were analyzed by 16 S ribosomal RNA (rRNA) sequencing. The BE group was divided into two groups based on their clinical status: acute exacerbation (AE group, n = 31) and stable phase (SP group, n = 30). Further, metabolome (lipid chromatography-mass spectrometry, LC-MS) analyses were conducted in randomly selected patients (n = 29) and healthy volunteers (n = 31). RESULTS: Decreased fecal microbial diversity and differential microbial and metabolic compositions were observed in bronchiectasis patients. Correlation analyses indicated associations between the differential genera and clinical parameters such as bronchiectasis severity index (BSI). Disease-associated gut microbiota was screened out, with eight genera exhibited high accuracy in distinguishing SP patients from HCs in the discovery cohort and validation cohort using a random forest model. Further correlation networks were applied to illustrate the relations connecting disease-associated genera and metabolites. CONCLUSION: The study uncovered the relationships among the decreased fecal microbial diversity, differential microbial and metabolic compositions in bronchiectasis patients by performing a multi-omics-based approach. It is the first study to characterize the gut microbiome and metabolome in bronchiectasis, and to uncover the gut microbiota's potentiality as biomarkers for bronchiectasis. TRIAL REGISTRATION:  This study is registered with ClinicalTrials.gov, number NCT04490447.


Subject(s)
Bronchiectasis , Microbiota , Adult , Humans , Bronchiectasis/diagnosis , Fibrosis , Metabolome , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
SELECTION OF CITATIONS
SEARCH DETAIL