Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Magn Reson Med ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164611

ABSTRACT

PURPOSE: This study aims to assess how T2 heterogeneity biases IMPULSED-derived metrics of tissue microstructure in solid tumors and evaluate the potential of estimating multi-compartmental T2 and microstructural parameters simultaneously. METHODS: This study quantifies the impact of T2 relaxation on IMPULSED-derived microstructural parameters using computer simulations and in vivo multi-TE IMPULSED MRI in five tumor models, including brain, breast, prostate, melanoma, and colon cancer. A comprehensive T2 + IMPULSED method was developed to fit multi-compartmental T2 and microstructural parameters simultaneously. A Bayesian model selection approach was carried out voxel-wisely to determine if the T2 heterogeneity needs to be included in IMPULSED MRI in cancer. RESULTS: Simulations suggest that T2 heterogeneity has a minor effect on the estimation of d in tissues with intermediate or high cell density, but significantly biases the estimation of v in $$ {v}_{in} $$ with low cell density. For the in vivo animal experiments, all IMPULSED metrics except v in $$ {v}_{in} $$ are statistically independent on TE. For B16 tumors, the IMPULSED-derived v in $$ {v}_{in} $$ exhibited a notable increase with longer TEs. For MDA-MB-231 tumors, IMPULSED-derived v in $$ {v}_{in} $$ showed a significant increase with increasing TEs. The T2 + IMPULSED-derived T 2 in $$ {T}_2^{in} $$ of all five tumor models are consistently smaller than T 2 ex $$ {T}_2^{ex} $$ . CONCLUSIONS: The findings from this study highlight two key observations: (i) TE has a negligible impact on IMPULSED-derived cell sizes, and (ii) the TE-dependence of IMPULSED-derived intracellular volume fractions used in T2 + IMPULSED modeling to estimate T 2 in $$ {T}_2^{in} $$ and T 2 ex $$ {T}_2^{ex} $$ . These insights contribute to the ongoing development and refinement of non-invasive MRI techniques for measuring cell sizes.

2.
ArXiv ; 2024 Aug 04.
Article in English | MEDLINE | ID: mdl-39130198

ABSTRACT

Early assessment of tumor therapeutic response is an important topic in precision medicine to optimize personalized treatment regimens and reduce unnecessary toxicity, cost, and delay. Although diffusion MRI (dMRI) has shown potential to address this need, its predictive accuracy is limited, likely due to its unspecific sensitivity to overall pathological changes. In this work, we propose a new quantitative dMRI-based method dubbed EXCHANGE (MRI of water Exchange, Confined and Hindered diffusion under Arbitrary Gradient waveform Encodings) for simultaneous mapping of cell size, cell density, and transcytolemmal water exchange. Such rich microstructural information comprehensively evaluates tumor pathologies at the cellular level. Validations using numerical simulations and in vitro cell experiments confirmed that the EXCHANGE method can accurately estimate mean cell size, density, and water exchange rate constants. The results from in vivo animal experiments show the potential of EXCHANGE for monitoring tumor treatment response. Finally, the EXCHANGE method was implemented in breast cancer patients with neoadjuvant chemotherapy, demonstrating its feasibility in assessing tumor therapeutic response in clinics. In summary, a new, quantitative dMRI-based EXCHANGE method was proposed to comprehensively characterize tumor microstructural properties at the cellular level, suggesting a unique means to monitor tumor treatment response in clinical practice.

SELECTION OF CITATIONS
SEARCH DETAIL