ABSTRACT
In this study, humic acid (HA) enhanced 17ß-estradiol (17ß-E2) degradation by Er3+-CdS/MoS2 (ECMS) was investigated under ultrasonic and light conditions. The degradation reaction rate of 17ß-E2 was increased from (14.414 ± 0.315) × 10-3 min-1 to (122.677 ± 1.729) × 10-3 min-1 within 90 min sonophotocatalytic (SPC) reaction with the addition of HA. The results of quenching coupled with chemical probe experiments indicated that more reactive intermediates (RIs) including reactive oxygen species (ROSs) and triplet-excited states were generated in the HA-enhanced sonophotocatalytic system. The triplet-excited states of humic acid (3HA*), hydroxyl radical (â¢OH), and superoxide radical (â¢O2-) were the dominant RIs for 17ß-E2 elimination. In addition, the energy- and electron-transfer process via coexisting HA also account for 12.86% and 29.24% contributions, respectively. The quantum yields of RIs in the SPC-ECMS-HA system followed the order of 3HA* > H2O2 > 1O2 > â¢O2-> â¢OH. Moreover, the spectral and fluorescence characteristics of HA were further analyzed during the sonophotocatalytic reaction process. The study expanded new insights into the comprehension of the effects of omnipresent coexisting HA and RIs formation for the removal of 17ß-E2 during the sonophotocatalytic process.
Subject(s)
Humic Substances , Water Pollutants, Chemical , Hydrogen Peroxide , Estradiol , Reactive Oxygen Species , Superoxides , Water Pollutants, Chemical/analysisABSTRACT
Biofilms inhabiting pipeline walls are critical to drinking water quality and safety. With massive pipeline replacement underway, however, biofilm formation process in newly built pipes and its effects on water quality are unclear. Moreover, differences and connections between biofilms in newly built and old pipes are unknown. In this study, early succession (≤ 120 days) of biofilm bacterial communities (abundance and diversity) in upper, middle and bottom areas of a newly built cement-lined ductile iron pipeline were evaluated using improved Propella™ biofilm reactor and multi-area analysis. A comparison with old pipelines (grey cast iron, 10 years) was performed. In the newly built pipeline, the abundance of biofilm bacteria did not change significantly between 40 and 80 days, but increased significantly between 80 and 120 days. The biofilm bacterial abundance (per unit area) in the bottom area was always higher than that in the upper and middle areas. Based on alpha diversity index and PCoA results, biofilm bacterial community richness, diversity and composition did not change significantly during the 120-day operation. Besides, biofilm shedding from the walls of newly built pipeline significantly increased bacterial abundance in the outlet water. Opportunistic pathogen-containing genera, such as Burkholderia, Acinetobacter and Legionella, were identified in both water and biofilm samples from newly built pipelines. The comparison between new and old pipelines suggested a higher bacterial abundance per unit area at the middle and bottom areas in old pipelines. Moreover, the bacterial community composition of biofilms in old pipelines was similar to that of newly built pipelines. These results contribute to accurate prediction and management of biofilm microbial communities in drinking water pipelines, ensuring the biosafety of drinking water. KEY POINTS: ⢠Biofilm bacterial communities in different areas of pipe wall were revealed. ⢠The abundance of biofilm bacteria increased significantly between 80 and 120 days. ⢠Biofilm bacterial community compositions of newly built and old pipes were similar.
Subject(s)
Drinking Water , Water Supply , Bacteria , Biofilms , Iron , Water MicrobiologyABSTRACT
Anaerobic digestion of decabromodiphenyl ether was carried out and compared in two continuously stirred anaerobic bioreactors for 210 days under thermophilic and mesophilic conditions. Results show that the degradation of decabromodiphenyl ether followed the first-order reaction kinetics, which exhibited a higher removal rate in the thermophilic reactor when compared to the mesophilic one, reaching its maximum of 1.1 µg·day-1. The anaerobic digestion of decabromodiphenyl ether was found to involve the replacement of bromines from polybrominated diphenyl ether by hydrogen atoms, gradually forming nona-, octa- and hepta-brominated diphenyl ether, respectively. Under the thermophilic condition, the reactors were dominated by Bacillus sp. and Methanosarcina sp. with high bioactivity and high concentrations of debromination microorganisms.
Subject(s)
Bioreactors , Halogenated Diphenyl Ethers , Anaerobiosis , Hydrogen , TemperatureABSTRACT
Constructed wetlands (CWs) are characterized by low construction cost, convenient maintenance and management, and environmentally friendly features. They have emerged as promising technologies for decentralized sewage treatment across rural areas. Source separation of black water and gray water can facilitate sewage recycling and reuse of reclaimed water, reduce the size of treatment facilities, and lower infrastructure investment and operating cost. This is consistent with the concept of sustainable development. However, black water contains high concentrations of ammonia nitrogen, and the denitrification capacity of CWs is not excellent due to insufficient carbon source. Therefore, application of CWs for black water treatment faces challenges. This article provides a review on the progress in CWs for treatment of the sewage with high-influent nitrogen load, with emphasis on the commonly used strengthening means and the role of plants in nitrogen removal via CWs. The current issues of rural sewage treatment with high-influent nitrogen load by CWs are also assessed. Finally, the challenges and perspectives are discussed for the optimization of CWs-enhanced denitrification strategies.
Subject(s)
Ammonia/analysis , Sewage/analysis , Water Pollutants, Chemical/metabolism , Water Purification/methods , Ammonia/metabolism , Bacteria/metabolism , Biodegradation, Environmental , Sewage/microbiology , Water Pollutants, Chemical/analysis , WetlandsABSTRACT
This study employed high-throughput quantitative PCR and 16S rRNA sequencing to evaluate the effect of temperature and residual antibiotics on the dynamics of antibiotic resistance genes (ARGs) and microbial communities during anaerobic digestion of swine manure. The abundances of total ARGs and 16S rRNA genes significantly decreased in all of four treatments (25°C, 37°C, and 37°C with 50 mg of wet weight antibiotics of body weight, and 55°C). The abundances of most ARG types were significantly correlated with those of the 16S rRNA gene and transposase gene (P < 0.01). However, the abundances of total ARGs at 55°C were much higher than those of other treatments. Meanwhile, the microbial communities at 55°C, where the Streptococcus pathogen remained at a relatively high abundance and cellulose degraders and hydrogen producers, such as Ethanoligenens and Coprococcus bacteria, increased, were markedly different from those of other treatments. Redundancy analysis indicates that temperature, pH, and the genus Streptococcus had the highest explanation for ARG variation among experimental factors, chemical properties, and representative genera, respectively. Network analysis further showed that the genus Streptococcus contributed greatly to the higher ARG abundance at 55°C. The moderate antibiotic residue only caused a slight and transitory inhibition for microbially diverse populations and promotion for ARG abundance, probably due to the degradation of antibiotics and microbial adaptability. Our results clarify the cooperativity of gene transfer-related items on ARG variation and intensively prove that higher temperature cannot always achieve better ARG removal in anaerobic digestion unless pathogens and gene transfer elements are more efficiently inhibited.IMPORTANCE Antibiotic resistance genes (ARGs) are frequently detected with high abundance in manure-applied soils. Anaerobic digestion is one of widely used processes for animal waste treatment. Thus, it is critical to understand the potential of anaerobic digestion to attenuate ARGs. Although some previous studies recommended thermophilic digestion for ARG removal, they did not get sufficient evidence to support this view. The antibiotics applied to animals are mostly excreted through feces and urine because of incomplete metabolism. It is indispensable to know whether residual antibiotics in manure will hinder ARG attenuation in anaerobic digesters. The significance of our research is in comprehensively understanding the evolution and mechanism of ARGs in anaerobic digestion of swine manure affected by temperature and residual antibiotics, which will allow the development of an ARG elimination strategy before their release into the environment.
Subject(s)
Bacteria/genetics , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Manure/microbiology , Temperature , Anaerobiosis/genetics , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/pathogenicity , Body Weight , DNA Transposable Elements/genetics , Digestion/physiology , Drug Resistance, Bacterial/drug effects , Drug Resistance, Bacterial/physiology , Gene Transfer, Horizontal , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Streptococcus/genetics , SwineABSTRACT
Accurately measuring and estimating trends and variations in nutrient levels is a significant part of managing emerging eutrophic lakes in developing countries. This study developed an integrated approach containing Seasonal Trend Decomposition using Loess (STL) and a dynamic nonlinear autoregressive model with exogenous input (NARX) network to decompose and estimate the nutrient concentrations in Lake Erhai, a preliminary eutrophic lake in China. The STL decomposition results indicated that total nitrogen (TN) concentration of Lake Erhai progressively descended from 2006 to 2014, except for some agriculture area. The total phosphorus (TP) concentration showed an increasing trend from 2006 to 2013 and then decreased in 2014, but in the area near the tourist attractions, TP increased continuously from 2011 to 2014. Seasonal variations in TN and TP indicated that the lowest water quality of Lake Erhai occurred from July to October. Based on results obtained with STL, TP was selected as the sensitive parameter, as it showed a significant deterioration trend, and the area near the tourist attractions was selected as the sensitive area. Three variables (DO, pH, and water temperature) were selected as input parameters to estimate TP using the dynamic NARX model. The NARX modeling results demonstrated that it can accurately estimate TP concentrations with low root-mean-square error (0.0071 mg/L). The study establishes a new approach to better understand trends and variations in nutrient levels and to better refine estimates by identifying more easily accessible physical parameters in a preliminary eutrophic lake.
Subject(s)
Environmental Monitoring/methods , Eutrophication , Models, Chemical , Water Pollutants, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , Agriculture , China , Lakes/chemistry , Nitrogen/analysis , Phosphorus/analysis , Seasons , Temperature , Water QualityABSTRACT
A distributed catchment hydrologic model (Hydrological Simulation Program--FORTRAN; HSPF) with improved sediment production processes was used to evaluate the effect of restoration of cultivated land to forest on the reduction of runoff and sediment load in the Jialingjiang basin, which forms part of the Yangtze River basin, China. The simulation results showed that restoration to forest reduced sediment production even in the case of minimum restoration at a threshold catchment slope of 25°, as advocated in the "Gain for Green Program " planned by the Chinese government, even though reduction of the peak flow rate in the river channel was small. The increase in forest area resulting from lowering of the threshold catchment slope reduced sediment production further.
Subject(s)
Conservation of Natural Resources/methods , Forests , Geologic Sediments/analysis , Rivers , Water Movements , China , Computer Simulation , Models, TheoreticalABSTRACT
Membrane electrochemical reactor (MER) shows superiority to electrochemical oxidation (EO) in high salinity organic wastewater (HSOW) treatment, but requirement of proton exchange membranes (PEM) increases investment and maintenance cost. In this work, the feasibility of using low-cost pressure-driven membranes as the separation membrane in MER system was systematically investigated. Commonly used pressure-driven membranes, including loose membranes such as microfiltration (MF) and ultrafiltration (UF), as well as dense membranes like nanofiltration (NF) and reverse osmosis (RO), were employed in the study. When tested in a contamination-free solution, MF and UF exhibited superior electrochemical performance compared to PEM, with comparable pH regulation capabilities in the short term. When foulant (humic acid, Ca2+ and Mg2+) presented in the feed, UF saved the most energy (43 %) compared to PEM with similar removal rate of UV254 (â¼85 %). In practical applications of MER for treating nanofiltration concentrate (NC) of landfill leachate, UF saved 27 % energy compared to PEM per cycle with the least Ca2+ and Mg2+ retention in membrane and none obvious organics permeation. For fouled RO and PEM with ion transport impediment, water splitting was exacerbated, which decreased the percentage of oxidation for organics. Overall, replacing of PEM with UF significantly reduce the costs associated with both the investment and operation of MER, which is expected to broaden the practical application for treating HSOW.
Subject(s)
Protons , Water Purification , Salinity , Feasibility Studies , OsmosisABSTRACT
A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated â¢OH and â¢O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.
Subject(s)
Electrodes , Graphite , Marine Toxins , Microcystins , Silver Compounds , Graphite/chemistry , Graphite/radiation effects , Microcystins/chemistry , Microcystins/isolation & purification , Catalysis , Silver Compounds/chemistry , Phosphates/chemistry , Oxides/chemistry , Electrochemical Techniques , Tungsten/chemistry , Chlorophyll A/chemistry , Zinc/chemistry , Water Purification/methods , Chlorophyll/chemistry , Photochemical Processes , Harmful Algal BloomABSTRACT
Algal blooms have become a widespread concern for drinking water production, threatening ecosystems and human health. Photocatalysis, a promising advanced oxidation process (AOP) technology for wastewater treatment, is considered a potential measure for in situ remediation of algal blooms. However, conventional photocatalysts often suffer from limited visible-light response and rapid recombination of photogenerated electron-hole pairs. In this study, we prepared a Z-scheme AgBr/NH2-MIL-125(Ti) composite with excellent visible light absorption performance using co-precipitation to efficiently inactivate Microcystis aeruginosa. The degradation efficiency of AgBr/NH2-MIL-125(Ti) for chlorophyll a was 98.7 % after 180 min of visible light irradiation, significantly surpassing the degradation rate efficiency of AgBr and NH2-MIL-125(Ti) by factors of 3.20 and 36.75, respectively. Moreover, the removal rate was maintained at 91.1 % even after five times of repeated use. The experimental results indicated that superoxide radicals (â¢O2-) were the dominant reactive oxygen species involved. The photocatalytic reaction altered the morphology and surface charge of algal cells, inhibited their metabolism, and disrupted their photosynthetic and antioxidant systems. In conclusion, this study presents a promising material for the application of photocatalytic technology in algal bloom remediation.
Subject(s)
Bromides , Light , Microcystis , Silver Compounds , Microcystis/radiation effects , Microcystis/metabolism , Catalysis , Silver Compounds/chemistry , Bromides/chemistry , Chlorophyll A/metabolism , Chlorophyll A/chemistry , Water Purification/methods , Titanium/chemistry , Titanium/radiation effectsABSTRACT
Persistent concerns regarding environmental hazards arise from the difficulty in disposing of radioactive plant-based wastes originating from the nuclear accident at the Fukushima Daiichi Nuclear Power Plant (FNPP) in Japan in 2011. In this study, three anaerobic digestion (AD) strategies were proposed: Sole anaerobic wet fermentation, and wet fermentations with either alkaline-heat or ultrasonic pre-treatment, which were employed for long-term anaerobic treatment of a genuine radioactive grass stemming from the FNPP accident. The objectives of this work are to investigate the effects of pre-treatments on biomass conversion efficiency and to gain insight into the leaching behavior of radiocaesium (Rad-Cs) within AD processes. Experimental results indicate that by introducing alkaline-heat and ultrasonic pre-treatments to AD systems, the removal efficiencies of total solids (TS) from the raw grass increased by 60.8 % and 42.5 %, respectively, compared to sole wet fermentation. Pre-treatments have been shown to enhance the stability of AD systems, both in terms of enhancing methane production and mitigating pH fluctuations triggered by the accumulation of organic acids. Remarkably, even though the Rad-Cs leaching rate was highest when the AD system was fed with the alkaline-heat pre-treated grass, it remained unsatisfactory at only 5.77 %. We inadvertently isolated a soil-like component from the raw grass, and analyzed both its proportion in the raw grass and the radioactivity intensity. The results indicate that although the soil constituted only 9.51 % TS of the raw grass, it accounted for a significant 81.35 % of the total radioactivity. The soil, which has a pronounced affinity for ionic Cs, being mixed into the raw grass, was identified as the primary factor limiting the leaching efficiency of Rad-Cs throughout both the pre-treatment and wet fermentation phases.
Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Radioactivity , Poaceae , Fermentation , Anaerobiosis , Biomass , Cesium Radioisotopes/analysis , Japan , SoilABSTRACT
Biological desulfurization using a bubble column reactor was investigated in a continuous biogas treatment. Rapid biogas circulation between the digester and the bubble column for biological desulfurization was used to stimulate the gas-liquid mass transfer of H(2)S. A positive correlation between the biogas circulation rate and H(2)S removal rate was observed. Moreover, the increase in the circulation rate stimulated the O(2) mass transfer, eventually translating into an increase in sulfate production from the oxidation of H(2)S. Throughout the continuous experiment, the reactor retained sufficient levels of sulfide-oxidizing bacteria. A comparison of the results of the continuous biogas treatment and batch tests suggests that the gas-liquid mass transfer rate of H(2)S was the rate-limiting step in the biological desulfurization in the reactor, indicating that the mass transfer efficiency of H(2)S needs to be improved to enhance the desulfurization performance.
Subject(s)
Biofuels , Bioreactors , Hydrogen Sulfide/metabolism , Waste Disposal, FluidABSTRACT
As a new sludge reduction technology with a phosphorus removal mechanism, a vibration milling technology that uses iron balls have been applied to the wastewater treatment process. Three anaerobic-aerobic cyclic activated sludge processes: one without sludge disintegration; one disintegrated sludge by ozonation; and the other disintegrated sludge with the vibrating ball mill were compared. Ozonation achieved the best sludge reduction performance, but milling had the best phosphorus removal. This is because iron was mixed into the wastewater treatment tank due to abrasion of the iron balls, leading to settling of iron phosphates. Thus, the simple means of using iron balls as the medium in a vibrating ball mill can achieve both a sludge reduction of half and excellent phosphorus removal. Material balances in the processes were calculated and it was found that carbon components in disintegrated sludge were more resistant to biological treatment than nitrogen.
Subject(s)
Iron , Sewage , Waste Disposal, Fluid/methods , Carbon/analysis , Nitrogen/analysis , Nitrogen Compounds/analysis , Ozone/chemistry , Phosphorus/analysisABSTRACT
Tar generated as a by-product during biomass gasification contains a high concentration of refractory organic matters. In this study, a hybrid upflow anaerobic sludge-biochar bed reactor was established for tar treatment, and the methane yield was 120-154 NmL-CH4/g-CODinf, 20-30% higher than the control reactor. COD removal and methane production significantly decreased in both reactors when the influent tar concentration was doubled from 4954 mg-COD/L to 9964 mg-COD/L. When the influent concentration was reduced, the biochar packed reactor showed a faster recovery. Batch tests confirmed that higher tar concentration inhibited methane production and induced longer lagphase. Biochar addition effectively relieved the inhibition and prolonged the retention of organic matters. SEM observation and 16S rRNA analysis suggested that biochar also acted as the microbe's carrier, and promoted the growth of some microbes. The results of this study provide new ideas for tar treatment.
Subject(s)
Oryza , Sewage , Anaerobiosis , Bioreactors , Charcoal , Methane , RNA, Ribosomal, 16S/genetics , Waste Disposal, FluidABSTRACT
It has been verified that, as an emerging contaminant, microplastics are capable of adsorbing certain traditional contaminants like the heavy metal Cd. However, the majority of previous studies only focused on certain types of virgin microplastics, especially for PE and PS. In addition, this adsorption process might be affected by microplastics inevitably undergoing aging and consequent changes in the natural environment. Unfortunately, the relevant reports on aging effects were mainly about organic pollutants, rather than heavy metals. By far, there have been few comprehensive and mechanistic studies on the key aging effects on the Cd adsorption by various types of microplastics. In this study, five representative types of microplastics (i.e., PS, ABS, PP, PVC, and PET) were selected for aging by ultraviolet radiation, and the physicochemical properties of virgin and aged microplastics were thoroughly compared, including specific surface area, crystallinity, surface functional groups, and surface elements. Accordingly, the changes in adsorption isotherms of Cd by microplastics were discussed. The results showed that:â aging induced non-significant changes in specific surface area but a significant decrease in crystallinity. Surface functional groups also changed, including the emergence of a C=O functional group on PS and ABS, the decrease in C=C absorption peak intensity on ABS, and the increase in absorption peak intensities of C=O, C-O, and polar ester groups on PET. Regarding surface C content, C=C/C-C decreased, whereas C-O and O-C=O increased. The total O content and O/C significantly increased as well. â¡ The Langmuir model well-fitted the adsorption isotherms of Cd by virgin and aged microplastics. Aging significantly expanded the adsorption capacity of Cd by microplastics, as the order of saturated adsorption capacity before aging was ABS (0.2284 mg·g-1)>PVC (0.1360 mg·g-1)>PS (0.1286 mg·g-1)>PP (0.1005 mg·g-1)>PET (0.0462 mg·g-1) and then became PS (0.2768 mg·g-1)>ABS (0.2586 mg·g-1)>PVC (0.1776 mg·g-1)>PP (0.1721 mg·g-1)>PET (0.0951 mg·g-1) after aging. ⢠Both crystallinity and surface functional groups played key roles in the adsorption of Cd by microplastics. As for virgin microplastics, crystallinity was negatively correlated with the saturated adsorption capacity of Cd, because the amorphous regions contributed most to Cd adsorption. Aging brought about the decrease in crystallinity and the increase in amorphous regions, which further promoted the oxidation reaction on microplastics. Consequently, oxygen-containing functional groups increased on the surface and eventually expanded the adsorption capacity of Cd by microplastics. Note that certain specific functional groups of various microplastics also had impacts on the adsorption process. These results provide valuable information about the environmental behaviors and interactions of microplastics and heavy metals in nature.
Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Cadmium , Microplastics , Plastics/chemistry , Polyvinyl Chloride , Ultraviolet Rays , Water Pollutants, Chemical/analysisABSTRACT
A combination of an acidification reactor and an up-flow staged sludge bed (USSB) reactor was applied for treatment of molasses wastewater containing a large amount of organic compounds and sulfate. The USSB reactor had three gas-solid separators (GSS) along the height of the reactor. The combined system was continuously operated at mesophilic temperature over 400 days. In the acidification reactor, acid formation and sulfate reduction were effectively carried out. The sugars contained in the influent wastewater were mostly acidified into acetate, propionate, and n-butyrate. In addition, 10-30% of influent sulfur was removed from the acidification reactor by means of sulfate reduction followed by stripping of hydrogen sulfide. The USSB achieved a high organic loading rate (OLR) of 30 kgCOD m(-3) day(-1) with 82% COD removal. Vigorous biogas production was observed at a rate of 15 Nm(3) biogas m(-3) reactor day(-1). The produced biogas, including hydrogen sulfide, was removed from the wastewater mostly via the GSS. The GSS provided a moderate superficial biogas flux and low sulfide concentration in the sludge bed, resulting in the prevention of sludge washout and sulfide inhibition of methanogens. By advantages of this feature, the USSB may have been responsible for achieving sufficient retention (approximately 60 gVSS L(-1)) of the granular sludge with high methanogenic activity (0.88 gCOD gVSS(-1) day(-1) for acetate and as high as 2.6 gCOD gVSS(-1) day(-1) for H(2)/CO(2)). Analysis of the microbial community revealed that sugar-degrading acid-forming bacteria proliferated in the sludge of the USSB as well as the acidification reactor at high OLR conditions.
Subject(s)
Bioreactors/microbiology , Industrial Waste , Molasses , Waste Disposal, Fluid/methods , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/metabolism , Biological Oxygen Demand Analysis , DNA, Bacterial/genetics , Fatty Acids, Volatile/biosynthesis , Hydrogen-Ion Concentration , Industrial Waste/analysis , Methane/analysis , Methane/biosynthesis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfates/analysis , Sulfates/metabolism , Sulfides/analysis , Sulfides/metabolismABSTRACT
This study employed high-throughput quantitative polymerase chain reaction to evaluate the effects of specific co-substrate and additive on the fitness of antibiotic resistome during swine manure composting. The results showed that corncob particle as a co-substrate significantly reduced the relative abundances of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) simultaneously. The diversity of ARGs was also reduced more effectively by corncob addition. Brick granule as an additive reduced the concentrations of bioavailable Cu and Zn. However, the relative abundances of ARGs and MGEs were not reduced by the addition of brick granule subsequently. Redundancy analysis indicated a negative effect of the C content and positive effects of class I integrase gene (intI) and bioavailable metals on the variation of the relative abundance of ARGs (p < 0.01). The Procrustes test showed a higher goodness-of-fit between the relative abundance of ARGs and 16S rRNA genes (r = 0.8166; p < 0.0001). Our results suggests that the effect of corncob particle on the relative abundance of ARGs was achieved by driving the changes in physicochemical properties and microbial communities. This study confirmed the hypothesis of fitness cost and demonstrated the contribution of extra C source to ARG attenuation during composting.
Subject(s)
Composting , Manure , Animals , Anti-Bacterial Agents , Carbon , Genes, Bacterial , RNA, Ribosomal, 16S , SwineABSTRACT
The nitrogen (N) cascade in rural areas of Changshu County should be measured and evaluated due to the large increase in anthropogenic disturbances in China's Yangtze Delta. Here, we developed a village-scale N flow model using Changshu County and its towns as a case study. The model included four subsystems and was used to describe the driving forces behind the N cascade from agricultural food production and household consumption to the environment (agriculture-food-environment) system. It was found that from 1998 to 2018 the N input increased from 274.63 to 848.65 kg N ha-1. The cropland N use efficiency (NUEc) decreased by 10.35%, whereas the livestock feed N use efficiency (NUEa) increased by 51.84%. A relatively lower NUE, with a higher N input, was found in Shajiabang Town, which was attributed to hairy crab farming. Changes in dietary patterns led to the food N cost (FNC) being in the range of 4.59-7.74 kg kg-1. Over the past two decades, the N losses from the agriculture-food-environment system decreased by 45.40% from 12,436.60 t N yr-1 (1998). The contribution of the croplands, livestock-breeding, and household consumption to the N losses were 32.44%, 37.78%, and 29.78%, respectively. About 62.83% of the total N losses entered the water environment. Nitrogen emissions from the croplands accounted for 63.21% of the N losses into the atmosphere. Nitrogen oxide (NOx) emissions accounted for 38.50% of the gas emissions, followed by NH3 (28.36%) and N2O (2.81%). The total N losses decreased annually but losses to the water environment increased by 5.10% from 60.16% (1998). The contribution of food production to the total N loss displayed a decreasing trend, while that of food consumption exhibited an increasing trend. Population growth and increased volumes of domestic waste in the Changsu area were the main driving forces for the increased contribution of household food consumption. The significant decline in cropland area and increase in built-up and heavily trafficked areas indicated an overall increase in anthropogenic disturbances, stimulating the N cascade in the Yangtze Delta from 1998 to 2018.
ABSTRACT
This study investigated the effects of the addition of micro- (Fe, Co, Ni, and Mo) and macro-(Sulfur) nutrients on mono-digestion of sorghum under mesophilic conditions. A continuous stirred-tank reactor was operated for more than 420 days under seven different experimental conditions. The experimental results showed poor performance for methane production and process stability without nutrient supplementation. Serious deficiencies in Co and S were confirmed by nutrient analysis of dry sorghum and digestate. Nutrient augmentation efficiently enhanced methane production and volatile fatty acid (VFA) removal. Methane production reached 223 mL-CH4/g-VS, almost matching the yield predicted by biochemical methane potential (BMP) test. S was demonstrated to have a critical effect on metal availability in the digester. Consequently, to maintain stable methane fermentation, suitable supplementations of S and Co are recommended for anaerobic sorghum mono-digestion.
Subject(s)
Biofuels , Sorghum , Anaerobiosis , Bioreactors , Methane , NutrientsABSTRACT
Behavior of veterinary antibiotics, the corresponding resistant genes in soil layer of constructed wetlands (red soil), and their response to different hydraulic loading rates (HLR) (2, 5, and 10 cm/d) were investigated. Results indicated that the soil layer had perfect performance for oxytetracycline and ciprofloxacin, yet sulfamethazine removal was unsatisfactory. Detection rates of oxytetracycline, ciprofloxacin and sulfamethazine in the effluent of simulation systems of soil layer were 8.33-36.36%, 8.33-47.83% and 100%, respectively. The model analysis of adsorption and hydrolysis indicated that physical adsorption, which was controlled by exchange reaction process based on diffusion, was the primary adsorption mechanism of target antibiotics in red soil, and the hydrolysis half-life values of antibiotics in the water of soil layer were shorter than them in wastewater. The removal response of oxytetracycline and ciprofloxacin to change of HLR was insignificant, yet the respective effluent concentrations of sulfamethazine at HLR of 2-10 cm/d were 41.90, 61.35 and 73.54 µg/L during treating synthetic livestock wastewater, which revealed significant positive correlation (P < 0.05). The relative abundances of each target resistance genes in soil showed significant increase after treating wastewater (10-5-10-6 to 10-4-10-1), and the total level of those at different HLRs (2, 5, and 10 cm/d) were 3.02 × 10-2, 7.54 × 10-2 and 8.65 × 10-1, respectively. In summary, HLR could affect the removal efficiency of partial antibiotic in soil layer of constructed wetlands, and the expression of antibiotic resistance in the soil gradually increased with increase in the HLR.