Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Acta Pharmacol Sin ; 44(3): 596-609, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36085523

ABSTRACT

Promotion of hepatic glycogen synthesis and inhibition of hepatic glucose production are effective strategies for controlling hyperglycemia in type 2 diabetes mellitus (T2DM), but agents with both properties were limited. Herein we report coronarin A, a natural compound isolated from rhizomes of Hedychium gardnerianum, which simultaneously stimulates glycogen synthesis and suppresses gluconeogenesis in rat primary hepatocytes. We showed that coronarin A (3, 10 µM) dose-dependently stimulated glycogen synthesis accompanied by increased Akt and GSK3ß phosphorylation in rat primary hepatocytes. Pretreatment with Akt inhibitor MK-2206 (2 µM) or PI3K inhibitor LY294002 (10 µM) blocked coronarin A-induced glycogen synthesis. Meanwhile, coronarin A (10 µM) significantly suppressed gluconeogenesis accompanied by increased phosphorylation of MEK, ERK1/2, ß-catenin and increased the gene expression of TCF7L2 in rat primary hepatocytes. Pretreatment with ß-catenin inhibitor IWR-1-endo (10 µM) or ERK inhibitor SCH772984 (1 µM) abolished the coronarin A-suppressed gluconeogenesis. More importantly, we revealed that coronarin A activated PI3K/Akt/GSK3ß and ERK/Wnt/ß-catenin signaling via regulation of a key upstream molecule IRS1. Coronarin A (10, 30 µM) decreased the phosphorylation of mTOR and S6K1, the downstream target of mTORC1, which further inhibited the serine phosphorylation of IRS1, and subsequently increased the tyrosine phosphorylation of IRS1. In type 2 diabetic ob/ob mice, chronic administration of coronarin A significantly reduced the non-fasting and fasting blood glucose levels and improved glucose tolerance, accompanied by the inhibited hepatic mTOR/S6K1 signaling and activated IRS1 along with enhanced PI3K/Akt/GSK3ß and ERK/Wnt/ß-catenin pathways. These results demonstrate the anti-hyperglycemic effect of coronarin A with a novel mechanism by inhibiting mTORC1/S6K1 to increase IRS1 activity, and highlighted coronarin A as a valuable lead compound for the treatment of T2DM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Mice , Rats , Animals , Gluconeogenesis , Liver Glycogen/metabolism , beta Catenin/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Diabetes Mellitus, Type 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Insulin/metabolism , TOR Serine-Threonine Kinases/metabolism , Glucose/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Homeostasis , Phosphorylation
2.
Acta Pharmacol Sin ; 42(11): 1834-1846, 2021 11.
Article in English | MEDLINE | ID: mdl-33574568

ABSTRACT

Suppression of excessive hepatic gluconeogenesis is an effective strategy for controlling hyperglycemia in type 2 diabetes (T2D). In the present study, we screened our compounds library to discover the active molecules inhibiting gluconeogenesis in primary mouse hepatocytes. We found that SL010110 (5-((4-allyl-2-methoxyphenoxy) methyl) furan-2-carboxylic acid) potently inhibited gluconeogenesis with 3 µM and 10 µM leading to a reduction of 45.5% and 67.5%, respectively. Moreover, SL010110 caused suppression of gluconeogenesis resulted from downregulating the protein level of phosphoenolpyruvate carboxykinase 1 (PEPCK1), but not from affecting the gene expressions of PEPCK, glucose-6-phosphatase, and fructose-1,6-bisphosphatase. Furthermore, SL010110 increased PEPCK1 acetylation, and promoted PEPCK1 ubiquitination and degradation. SL010110 activated p300 acetyltransferase activity in primary mouse hepatocytes. The enhanced PEPCK1 acetylation and suppressed gluconeogenesis caused by SL010110 were blocked by C646, a histone acetyltransferase p300 inhibitor, suggested that SL010110 inhibited gluconeogenesis by activating p300. SL010110 decreased NAD+/NADH ratio, inhibited SIRT2 activity, and further promoted p300 acetyltransferase activation and PEPCK1 acetylation. These effects were blocked by NMN, an NAD+ precursor, suggested that SL010110 inhibited gluconeogenesis by inhibiting SIRT2, activating p300, and subsequently promoting PEPCK1 acetylation. In type 2 diabetic ob/ob mice, single oral dose of SL010110 (100 mg/kg) suppressed gluconeogenesis accompanied by the suppressed hepatic SIRT2 activity, increased p300 activity, enhanced PEPCK1 acetylation and degradation. Chronic oral administration of SL010110 (15 or 50 mg/kg) significantly reduced the blood glucose levels in ob/ob and db/db mice. This study reveals that SL010110 is a lead compound with a distinct mechanism of suppressing gluconeogenesis via SIRT2-p300-mediated PEPCK1 degradation and potent anti-hyperglycemic activity for the treatment of T2D.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Gluconeogenesis/drug effects , Glucose/metabolism , Hypoglycemic Agents/therapeutic use , Intracellular Signaling Peptides and Proteins/metabolism , Phosphoenolpyruvate Carboxykinase (GTP)/metabolism , Sirtuin 2/metabolism , p300-CBP Transcription Factors/metabolism , Animals , Diabetes Mellitus, Experimental/drug therapy , Dose-Response Relationship, Drug , Gluconeogenesis/physiology , Homeostasis/drug effects , Homeostasis/physiology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Mice, Transgenic , Phosphoenolpyruvate Carboxykinase (GTP)/antagonists & inhibitors , Proteolysis/drug effects , Sirtuin 2/antagonists & inhibitors
3.
Bioorg Med Chem ; 17(15): 5722-32, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19574056

ABSTRACT

PPARgamma and 11beta-HSD1 are attractive therapeutic targets for type 2 diabetes. However, PPARgamma agonists induce adipogenesis, which causes the side effect of weight gain, whereas 11beta-HSD1 inhibitors prevent adipogenesis and may be beneficial for the treatment of obesity in diabetic patients. For the first time, we designed, synthesized a series of alpha-aryloxy-alpha-methylhydrocinnamic acids as dual functional agents which activate PPARgamma and inhibit 11beta-HSD1 simultaneously. The compound 11e exhibited the most potent inhibitory activity compared to that of the lead compound 2, with PPARgamma (EC(50)=6.76 microM) and 11beta-HSD1 (IC(50)=0.76 microM) in vitro. Molecular modeling study for compound 11e was also presented. Compound 11e showed excellent efficacy for lowering glucose, triglycerides, body fat, in well established mice and rats models of diabetes and obesity and had a favorable ADME profile.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Hypolipidemic Agents/therapeutic use , Obesity/drug therapy , PPAR gamma/agonists , Phenylpropionates/therapeutic use , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Animals , Body Weight/drug effects , Fats/metabolism , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Mice , Models, Molecular , Obesity/chemically induced , PPAR gamma/metabolism , Phenylpropionates/chemistry , Phenylpropionates/pharmacokinetics , Phenylpropionates/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL