Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(26): e2122805119, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35733260

ABSTRACT

During viral infection, sensing of viral RNA by retinoic acid-inducible gene-I-like receptors (RLRs) initiates an antiviral innate immune response, which is mediated by the mitochondrial adaptor protein VISA (virus-induced signal adaptor; also known as mitochondrial antiviral signaling protein [MAVS]). VISA is regulated by various posttranslational modifications (PTMs), such as polyubiquitination, phosphorylation, O-linked ß-d-N-acetylglucosaminylation (O-GlcNAcylation), and monomethylation. However, whether other forms of PTMs regulate VISA-mediated innate immune signaling remains elusive. Here, we report that Poly(ADP-ribosyl)ation (PARylation) is a PTM of VISA, which attenuates innate immune response to RNA viruses. Using a biochemical purification approach, we identified tankyrase 1 (TNKS1) as a VISA-associated protein. Viral infection led to the induction of TNKS1 and its homolog TNKS2, which translocated from cytosol to mitochondria and interacted with VISA. TNKS1 and TNKS2 catalyze the PARylation of VISA at Glu137 residue, thereby priming it for K48-linked polyubiquitination by the E3 ligase Ring figure protein 146 (RNF146) and subsequent degradation. Consistently, TNKS1, TNKS2, or RNF146 deficiency increased the RNA virus-triggered induction of downstream effector genes and impaired the replication of the virus. Moreover, TNKS1- or TNKS2-deficient mice produced higher levels of type I interferons (IFNs) and proinflammatory cytokines after virus infection and markedly reduced virus loads in the brains and lungs. Together, our findings uncover an essential role of PARylation of VISA in virus-triggered innate immune signaling, which represents a mechanism to avoid excessive harmful immune response.


Subject(s)
Adaptor Proteins, Signal Transducing , Immunity, Innate , RNA Virus Infections , RNA Viruses , Tankyrases , Ubiquitin-Protein Ligases , Adaptor Proteins, Signal Transducing/metabolism , Animals , HEK293 Cells , Humans , Immunity, Innate/genetics , Mice , RNA Virus Infections/immunology , RNA Viruses/immunology , Tankyrases/genetics , Tankyrases/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
2.
Front Immunol ; 11: 608976, 2020.
Article in English | MEDLINE | ID: mdl-33469458

ABSTRACT

Transforming growth factor-ß (TGF-ß)-activated kinase 1 (TAK1) is a member of the MAPK kinase kinase (MAPKKK) family and has been implicated in the regulation of a wide range of physiological and pathological processes. TAK1 functions through assembling with its binding partners TAK1-binding proteins (TAB1, TAB2, and TAB3) and can be activated by a variety of stimuli such as tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß), and toll-like receptor ligands, and they play essential roles in the activation of NF-κB and MAPKs. Numerous studies have demonstrated that post-translational modifications play important roles in properly controlling the activity, stability, and assembly of TAK1-TABs complex according to the indicated cellular environment. This review focuses on the recent advances in TAK1-TABs-mediated signaling and the regulations of TAK1-TABs complex by post-translational modifications.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Inflammation/metabolism , MAP Kinase Kinase Kinases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Humans , Interleukin-1beta/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL