Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Sensors (Basel) ; 22(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35891063

ABSTRACT

Optical fiber measurement technology is widely used in the strength testing of buildings, the health testing of industrial equipment, and the minimally invasive surgery of modern medical treatment due to its characteristics of free calibration, high precision, and small size. This paper presents an algorithm that can improve the range and stability of strain measurements in order to solve the problems of the small range and measurement failure of optical fiber strain sensors based on optical frequency-domain reflectometry (OFDR). Firstly, a Rayleigh scattering model based on the refractive index perturbation of an optical fiber is proposed to study the characteristics of Rayleigh scattering and to guide the strain demodulation algorithm based on the spectral shift. Secondly, a local similar scanning method that can maintain a high similarity by monitoring local Rayleigh scattering signals (LSs) before and after strain is proposed. Thirdly, a generalized cross-correlation algorithm is proposed to detect spectral offset, solving the problem of demodulation failure in the case of a Rayleigh scattering signal with a low signal-to-noise ratio. Experiments show that the proposed method still has high stability when the spatial resolution is 3 mm. The measurement precision is 6.2 µÎµ, which proves that the multi-peaks or pseudo-peaks of the traditional algorithm in the case of a large strain, the high spatial resolution, and the poor signal-to-noise ratio are solved, and the stability of the strain measurement process is improved.


Subject(s)
Optical Fibers , Refractometry
2.
Opt Express ; 29(15): 23258-23272, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34614593

ABSTRACT

High-resolution optical spectral analysis method is of significant importance for those who want to explore the physical world from the frequency domain. Aiming at the resolution degradation of classical coherent optical spectrum analysis (COSA) caused by the mirror phenomenon, this paper modifies the COSA system by introducing two homologous Brillouin scattering beams to serve as the pre-filter and local oscillator (LO), respectively. The central frequencies of the pre-filtered signal and the LO are locked by the Brillouin frequency shifts of those two Brillouin scattering beams. By means of this modification, the pre-filtered signal is located at either the upper-frequency-shifted side or the lower-frequency-shifted sides of the LO but could not exist on both sides of the LO. The proposed method could cancel the mirror phenomenon and thus improve the systematic resolution to 1.3 MHz in theory and 2 MHz in practice.

3.
Food Funct ; 15(14): 7592-7604, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38938065

ABSTRACT

Sinensetin (SIN), a polymethoxylated flavonoid, exists widely in citrus fruits with abundant biological activities, such as antioxidant and anti-inflammatory properties, delaying the progression of lung fibers and ameliorating inflammatory lung injury. Herein, an in vivo model of LPS-induced acute lung injury (ALI) in mice and an in vitro model of LPS + IFN-γ-induced M1 polarization in RAW264.7 cells were established to assess the effects and molecular mechanisms of SIN in ameliorating ALI. In the present study, the results showed that SIN significantly reduced BALF IL1ß, IL6, and TNF-α levels and neutrophil infiltration, inhibited lung tissue COX2 and iNOS expression, reduced serum and lung tissue inflammatory factor levels, and attenuated lung tissue inflammatory infiltration and ROS levels in animal experiments. RNA sequencing analysis showed that SIN markedly inhibited the expression of inflammation-related pathway genes such as NOD-like receptor signaling. Further mechanistic studies confirmed that SIN significantly inhibited the dissociation of Txnip and Trx-1 and decreased the expression of NLRP3, ASC, pro-Caspase-1, cleavage Caspase-1 p10, NEK7, Caspase-8, IL1ß, IL18, and GSDMD. Meanwhile, SIN docked to NLRP3 with strong affinity and bound stably in the hydrophobic docking pocket. Similarly, the same results were observed in in vitro macrophage M1 polarization experiments. In conclusion, the results revealed that SIN ameliorated the onset and progression of ALI by inhibiting Txnip/NLRP3/Caspase-1/GSDMD signaling-mediated inflammatory responses and pyroptosis. These findings emphasize the significant role of SIN in ameliorating ALI and provide insights into the strategy for exploring the functional effects of foods.


Subject(s)
Acute Lung Injury , Carrier Proteins , Caspase 1 , Citrus , Flavonoids , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , Signal Transduction , Animals , Male , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Carrier Proteins/metabolism , Caspase 1/metabolism , Citrus/chemistry , Flavonoids/pharmacology , Fruit/chemistry , Inflammation/drug therapy , Inflammation/metabolism , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis/drug effects , RAW 264.7 Cells , Signal Transduction/drug effects , Thioredoxins
4.
J Ethnopharmacol ; 329: 118162, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38588989

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Exocarpium Citri Grandis (ECG), the epicarp of C. grandis 'Tomentosa' which is also known as Hua-Ju-Hong in China, has been widely used for thousands of years to treat inflammatory lung disorders such as asthma, and cough as well as dispelling phlegm. However, its underlying pharmacological mechanisms in acute lung injury (ALI) remain unclear. AIM OF THE STUDY: To explore the therapeutic effect of ECG on ALI and reveal the potential mechanisms based on experimental techniques in vivo and in vitro. MATERIALS AND METHODS: Lipopolysaccharides (LPS) induced ALI in mice and induced RAW 264.7 cell inflammatory model were established to investigate the pharmacodynamics of ECG. ELISA kits, commercial kits, Western Blot, qPCR, Hematoxylin and Eosin (H&E) staining, immunohistochemistry, and immunofluorescence technologies were used to evaluate the pharmacological mechanisms of ECG in ameliorating ALI. RESULTS: ECG significantly attenuated pulmonary edema in LPS-stimulated mice and decreased the levels of IL1ß, IL6, and TNF-α in serum and BALF, reduced MDA and iron concentration as well as increased SOD and GSH levels in lung tissues, and also decreased the ROS level in BALF and Lung tissue. Further pharmacological mechanism studies showed that ECG significantly inhibited mRNA expression of inflammatory signaling factors and chemokines, and down-regulated the expression of TLR4, MyD88, NF-κB p65, NF-κB p-p65 (S536), COX2, iNOS, Txnip, NLRP3, ASC, Caspase-1, JAK1, p-JAK1 (Y1022), JAK2, STAT1, p-STAT1 (S727), STAT3, p-STAT3 (Y705), STAT4, p-STAT4 (Y693), and Keap1, and also up-regulated the expression of Trx-1, Nrf2, HO-1, NQO1, GPX4, PCBP1, and SLC40A1. In the LPS-induced RAW264.7 cell inflammatory model, ECG showed similar results to animal experiments. CONCLUSIONS: Our results showed that ECG alleviated ALI by inhibiting TLR4/MyD88/NF-κB p65 and JAK/STAT signaling pathway-mediated inflammatory response, Txnip/NLRP3 signaling pathway-mediated inflammasome activation, and regulating Nrf2/GPX4 axis-mediated ferroptosis. Our findings provide an experimental basis for the application of ECG.


Subject(s)
Acute Lung Injury , Ferroptosis , Inflammasomes , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Mice , Lipopolysaccharides/toxicity , RAW 264.7 Cells , Ferroptosis/drug effects , Male , Inflammasomes/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Mice, Inbred C57BL , Citrus/chemistry , Signal Transduction/drug effects , Plant Extracts/pharmacology , Lung/drug effects , Lung/pathology , Lung/metabolism
5.
Front Psychiatry ; 15: 1414242, 2024.
Article in English | MEDLINE | ID: mdl-39247617

ABSTRACT

Background: The incidence rate of adolescent depression and anxiety has been increasing since the outbreak of COVID-19, which there are no effective therapeutic drugs available. Si-ni San is commonly used in traditional Chinese medicine for the treatment of depression-like as well as anxiety-like behavior, but its mechanism for treating depression combined with anxiety during adolescence is not yet clear. Methods: Network pharmacology was used to explore potential drug molecules and related targets, molecular docking and molecular dynamics (MD) simulation were used to evaluate the interaction between the potential drug molecules and related targets, and a model of anxiety combined with depression in adolescent rats as well as the following behavioral tests and molecular biology tests were used to verify the results from network pharmacology and molecular docking. Results: As a result, 256 active ingredients of Si-ni San and 1128 potential targets were screened out. Among them, quercetin, Luteolin, kaempferol, 7-Methoxy-2-methyl isoflavone, formononetin showed to be the most potential ingredients; while STAT3, IL6, TNF, AKT1, AKT1, TP53, IL1B, MAPK3, VEGFA, CASP3, MMP9 showed to be the most potential targets. AGE-RAGE signaling pathway in diabetic complications, IL-17 signaling pathway, HIF-1 signaling pathway, PI3K-Akt signaling pathway and TNF signaling pathway, which are involved in anti-inflammation processes, showed to be the most probable pathways regulated by Si-ni San. Molecular docking and MD simulation between the compounds to inflammation-associated targets revealed good binding abilities of quercetin, Luteolin, kaempferol, nobiletin and formononetin to PTGS2 and PPARγ. In the experiment with adolescent rats, Si-ni San markedly suppressed early maternal separation (MS) combined with adolescent chronic unpredictable mild stress (CUMS)-induced depression combined with anxiety. The qPCR results further indicated that Si-ni San regulated the oxidative stress and inflammatory response. Conclusion: This study demonstrates that adolescent anxiety- and depression-like behavior induced by MS combined CUMS can be ameliorated by Si-ni San by improved inflammation in hippocampus via targeting TNF pathway and Nrf2 pathway, helping to reveal the mechanism of Si-ni San in treating adolescent depression combined with anxiety.

SELECTION OF CITATIONS
SEARCH DETAIL