Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
1.
PLoS Pathog ; 19(10): e1011681, 2023 10.
Article in English | MEDLINE | ID: mdl-37819933

ABSTRACT

In the case of the Japanese encephalitis virus (JEV), the envelope protein (E), a major component of viral particles, contains a highly conserved N-linked glycosylation site (E: N154). Glycosylation of the E protein is thought to play an important role in the ability of the virus to attach to target cells during transmission; however, its role in viral particle formation and release remains poorly understood. In this study, we investigated the role of N-glycosylation of flaviviral structural proteins in viral particle formation and secretion by introducing mutations in viral structural proteins or cellular factors involved in glycoprotein transport and processing. The number of secreted subviral particles (SVPs) was significantly reduced in N154A, a glycosylation-null mutant, but increased in D67N, a mutant containing additional glycosylation sites, indicating that the amount of E glycosylation regulates the release of SVPs. SVP secretion was reduced in cells deficient in galactose, sialic acid, and N-acetylglucosamine modifications in the Golgi apparatus; however, these reductions were not significant, suggesting that glycosylation mainly plays a role in pre-Golgi transport. Fluorescent labeling of SVPs using a split green fluorescent protein (GFP) system and time-lapse imaging by retention using selective hooks (RUSH) system revealed that the glycosylation-deficient mutant was arrested before endoplasmic reticulum (ER)- Golgi transport. However, the absence of ERGIC-53 and ERGIC-L, ER-Golgi transport cargo receptors that recognize sugar chains on cargo proteins, does not impair SVP secretion. In contrast, the solubility of the N154A mutant of E or the N15A/T17A mutant of prM in cells was markedly lower than that of the wild type, and proteasome-mediated rapid degradation of these mutants was observed, indicating the significance of glycosylation of both prM and E in proper protein folding and assembly of viral particles in the ER.


Subject(s)
Encephalitis Virus, Japanese , Flavivirus , Glycosylation , Flavivirus/metabolism , Viral Envelope Proteins/metabolism , Encephalitis Virus, Japanese/metabolism , Virion/metabolism
2.
Int Immunol ; 36(8): 405-412, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38564192

ABSTRACT

Immunoglobulin G (IgG) molecules that bind antigens on the membrane of target cells spontaneously form hexameric rings, thus recruiting C1 to initiate the complement pathway. However, our previous report indicated that a mouse IgG mutant lacking the Cγ1 domain activates the pathway independently of antigen presence through its monomeric interaction with C1q via the CL domain, as well as Fc. In this study, we investigated the potential interaction between C1q and human CL isoforms. Quantitative single-molecule observations using high-speed atomic force microscopy revealed that human Cκ exhibited comparable C1q binding capabilities with its mouse counterpart, surpassing the Cλ types, which have a higher isoelectric point than the Cκ domains. Nuclear magnetic resonance and mutation experiments indicated that the human and mouse Cκ domains share a common primary binding site for C1q, centred on Glu194, a residue conserved in the Cκ domains but absent in the Cλ domains. Additionally, the Cγ1 domain, with its high isoelectric point, can cause electrostatic repulsion to the C1q head and impede the C1q-interaction adjustability of the Cκ domain in Fab. The removal of the Cγ1 domain is considered to eliminate these factors and thus promote Cκ interaction with C1q with the potential risk of uncontrolled activation of the complement pathway in vivo in the absence of antigen. However, this research underscores the presence of potential subsites in Fab for C1q binding, offering promising targets for antibody engineering to refine therapeutic antibody design.


Subject(s)
Complement C1q , Humans , Animals , Complement C1q/immunology , Complement C1q/metabolism , Complement C1q/chemistry , Mice , Binding Sites , Protein Binding , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunoglobulin G/chemistry
3.
J Bacteriol ; 206(9): e0020524, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39194224

ABSTRACT

Members of the kingdom Nanobdellati, previously known as DPANN archaea, are characterized by ultrasmall cell sizes and reduced genomes. They primarily thrive through ectosymbiotic interactions with specific hosts in diverse environments. Recent successful cultivations have emphasized the importance of adhesion to host cells for understanding the ecophysiology of Nanobdellati. Cell adhesion is often mediated by cell surface carbohydrates, and in archaea, this may be facilitated by the glycosylated S-layer protein that typically coats their cell surface. In this study, we conducted glycoproteomic analyses on two co-cultures of Nanobdellati with their host archaea, as well as on pure cultures of both host and non-host archaea. Nanobdellati exhibited various glycoproteins, including archaellins and hypothetical proteins, with glycans that were structurally distinct from those of their hosts. This indicated that Nanobdellati autonomously synthesize their glycans for protein modifications probably using host-derived substrates, despite the high energy cost. Glycan modifications on Nanobdellati proteins consistently occurred on asparagine residues within the N-X-S/T sequon, consistent with patterns observed across archaea, bacteria, and eukaryotes. In both host and non-host archaea, S-layer proteins were commonly modified with hexose, N-acetylhexosamine, and sulfonated deoxyhexose. However, the N-glycan structures of host archaea, characterized by distinct sugars such as deoxyhexose, nonulosonate sugar, and pentose at the nonreducing ends, were implicated in enabling Nanobdellati to differentiate between host and non-host cells. Interestingly, the specific sugar, xylose, was eliminated from the N-glycan in a host archaeon when co-cultured with Nanobdella. These findings enhance our understanding of the role of protein glycosylation in archaeal interactions.IMPORTANCENanobdellati archaea, formerly known as DPANN, are phylogenetically diverse, widely distributed, and obligately ectosymbiotic. The molecular mechanisms by which Nanobdellati recognize and adhere to their specific hosts remain largely unexplored. Protein glycosylation, a fundamental biological mechanism observed across all domains of life, is often crucial for various cell-cell interactions. This study provides the first insights into the glycoproteome of Nanobdellati and their host and non-host archaea. We discovered that Nanobdellati autonomously synthesize glycans for protein modifications, probably utilizing substrates derived from their hosts. Additionally, we identified distinctive glycosylation patterns that suggest mechanisms through which Nanobdellati differentiate between host and non-host cells. This research significantly advances our understanding of the molecular basis of microbial interactions in extreme environments.


Subject(s)
Archaeal Proteins , Glycosylation , Archaeal Proteins/metabolism , Archaeal Proteins/genetics , Archaeal Proteins/chemistry , Nanoarchaeota/metabolism , Nanoarchaeota/genetics , Glycoproteins/metabolism , Glycoproteins/genetics , Glycoproteins/chemistry , Archaea/metabolism , Archaea/genetics , Polysaccharides/metabolism , Membrane Glycoproteins
4.
Cell Struct Funct ; 49(2): 47-55, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-38987202

ABSTRACT

The Golgi apparatus, a crucial organelle involved in protein processing, including glycosylation, exhibits complex sub-structures, i.e., cis-, medial, and trans-cisternae. This study investigated the distribution of glycosyltransferases within the Golgi apparatus of mammalian cells via 3D super-resolution imaging. Focusing on human glycosyltransferases involved in N-glycan modification, we found that even enzymes presumed to coexist in the same Golgi compartment exhibit nuanced variations in localization. By artificially making their N-terminal regions [composed of a cytoplasmic, transmembrane, and stem segment (CTS)] identical, it was possible to enhance the degree of their colocalization, suggesting the decisive role of this region in determining the sub-Golgi localization of enzymes. Ultimately, this study reveals the molecular codes within CTS regions as key determinants of glycosyltransferase localization, providing insights into precise control over the positioning of glycosyltransferases, and consequently, the interactions between glycosyltransferases and substrate glycoproteins as cargoes in the secretory pathway. This study advances our understanding of Golgi organization and opens avenues for programming the glycosylation of proteins for clinical applications.Key words: Golgi apparatus, glycosyltransferase, 3D super-resolution imaging, N-glycosylation.


Subject(s)
Glycosyltransferases , Golgi Apparatus , Imaging, Three-Dimensional , Golgi Apparatus/metabolism , Golgi Apparatus/enzymology , Humans , Glycosyltransferases/metabolism , Imaging, Three-Dimensional/methods , Glycosylation , HeLa Cells
5.
Glycobiology ; 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058648

ABSTRACT

The Human Glycome Atlas (HGA) Project was launched in April 2023, spearheaded by three Japanese institutes: the Tokai National Higher Education and Research System, the National Institutes of Natural Sciences, and Soka University. This was the first time that a field in the life sciences was adopted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) for a Large-scale Academic Frontiers Promotion Project. This project aims to construct a knowledgebase of human glycans and glycoproteins as a standard for the human glycome. A high-throughput pipeline for comprehensively analyzing 20,000 blood samples in its first five years is planned, at which time an access-controlled version of a human glycomics knowledgebase, called TOHSA, will be released. By the end of the final tenth year, TOHSA will provide a central resource linking human glycan data with other omics data including disease-related information.

6.
Biol Pharm Bull ; 47(1): 334-338, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38143078

ABSTRACT

This study employed high-speed atomic force microscopy to quantitatively analyze the interactions between therapeutic antibodies and Fcγ receptors (FcγRs). Antibodies are essential components of the immune system and are integral to biopharmaceuticals. The focus of this study was on immunoglobulin G molecules, which are crucial for antigen binding via the Fab segments and cytotoxic functions through their Fc portions. We conducted real-time, label-free observations of the interactions of rituximab and mogamulizumab with the recombinant FcγRIIIa and FcγRIIa. The dwell times of FcγR binding were measured at the single-molecule level, which revealed an extended interaction duration of mogamulizumab with FcγRIIIa compared with that of rituximab. This is linked to enhanced antibody-dependent cellular cytotoxicity that is attributed to the absence of the core fucosylation of Fc-linked N-glycan. This study also emphasizes the crucial role of the Fab segments in the interaction with FcγRIIa as well as that with FcγRIIIa. This approach provided quantitative insight into therapeutic antibody interactions and exemplified kinetic proofreading, where cellular discrimination relies on ligand residence times. Observing the dwell times of antibodies on the effector molecules has emerged as a robust indicator of therapeutic antibody efficacy. Ultimately, these findings pave the way for the development of refined therapeutic antibodies with tailored interactions with specific FcγRs. This research contributes to the advancement of biopharmaceutical antibody design and optimizing antibody-based treatments for enhanced efficacy and precision.


Subject(s)
Immunoglobulin G , Receptors, IgG , Receptors, IgG/chemistry , Receptors, IgG/metabolism , Rituximab/pharmacology , Microscopy, Atomic Force , Protein Binding , Immunologic Factors , Carrier Proteins/metabolism
7.
Int J Mol Sci ; 25(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38791456

ABSTRACT

Presenilin proteins (PS1 and PS2) represent the catalytic subunit of γ-secretase and play a critical role in the generation of the amyloid ß (Aß) peptide and the pathogenesis of Alzheimer disease (AD). However, PS proteins also exert multiple functions beyond Aß generation. In this study, we examine the individual roles of PS1 and PS2 in cellular cholesterol metabolism. Deletion of PS1 or PS2 in mouse models led to cholesterol accumulation in cerebral neurons. Cholesterol accumulation was also observed in the lysosomes of embryonic fibroblasts from Psen1-knockout (PS1-KO) and Psen2-KO (PS2-KO) mice and was associated with decreased expression of the Niemann-Pick type C1 (NPC1) protein involved in intracellular cholesterol transport in late endosomal/lysosomal compartments. Mass spectrometry and complementary biochemical analyses also revealed abnormal N-glycosylation of NPC1 and several other membrane proteins in PS1-KO and PS2-KO cells. Interestingly, pharmacological inhibition of N-glycosylation resulted in intracellular cholesterol accumulation prominently in lysosomes and decreased NPC1, thereby resembling the changes in PS1-KO and PS2-KO cells. In turn, treatment of PS1-KO and PS2-KO mouse embryonic fibroblasts (MEFs) with the chaperone inducer arimoclomol partially normalized NPC1 expression and rescued lysosomal cholesterol accumulation. Additionally, the intracellular cholesterol accumulation in PS1-KO and PS2-KO MEFs was prevented by overexpression of NPC1. Collectively, these data indicate that a loss of PS function results in impaired protein N-glycosylation, which eventually causes decreased expression of NPC1 and intracellular cholesterol accumulation. This mechanism could contribute to the neurodegeneration observed in PS KO mice and potentially to the pathogenesis of AD.


Subject(s)
Cholesterol , Fibroblasts , Lysosomes , Niemann-Pick C1 Protein , Presenilin-1 , Presenilin-2 , Animals , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cholesterol/metabolism , Fibroblasts/metabolism , Glycosylation , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Lysosomes/metabolism , Mice, Knockout , Neurons/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/metabolism , Presenilin-2/genetics
8.
J Biol Chem ; 298(6): 101950, 2022 06.
Article in English | MEDLINE | ID: mdl-35447118

ABSTRACT

Asparagine-linked glycosylation (N-glycosylation) of proteins in the cancer secretome has been gaining increasing attention as a potential biomarker for cancer detection and diagnosis. Small extracellular vesicles (sEVs) constitute a large part of the cancer secretome, yet little is known about whether their N-glycosylation status reflects known cancer characteristics. Here, we investigated the N-glycosylation of sEVs released from small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) cells. We found that the N-glycans of SCLC-sEVs were characterized by the presence of structural units also found in the brain N-glycome, while NSCLC-sEVs were dominated by typical lung-type N-glycans with NSCLC-associated core fucosylation. In addition, lectin-assisted N-glycoproteomics of SCLC-sEVs and NSCLC-sEVs revealed that integrin αV was commonly expressed in sEVs of both cancer cell types, while the epithelium-specific integrin α6ß4 heterodimer was selectively expressed in NSCLC-sEVs. Importantly, N-glycomics of the immunopurified integrin α6 from NSCLC-sEVs identified NSCLC-type N-glycans on this integrin subunit. Thus, we conclude that protein N-glycosylation in lung cancer sEVs may potentially reflect the histology of lung cancers.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Glycosylation , Lung Neoplasms , Protein Processing, Post-Translational , Small Cell Lung Carcinoma , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Extracellular Vesicles/metabolism , Humans , Lung Neoplasms/pathology , Polysaccharides/metabolism , Small Cell Lung Carcinoma/metabolism , Small Cell Lung Carcinoma/pathology
9.
Glycobiology ; 32(8): 646-650, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35452093

ABSTRACT

High-performance liquid chromatography (HPLC) elution data provide a useful tool for quantitative glycosylation profiling, discriminating isomeric oligosaccharides. The web application Glycoanalysis by the Three Axes of MS and Chromatography (GALAXY), which is based on the three-dimensional HPLC map of N-linked oligosaccharides with pyridyl-2-amination developed by Dr. Noriko Takahashi, has been extensively used for N-glycosylation profiling at molecular, cellular, and tissue levels. Herein, we describe the updated GALAXY as version 3, which includes new HPLC data including those of glucuronylated and sulfated glycans, an improved graphical user interface using modern technologies, and linked to glycan information in GlyTouCan and the GlyCosmos Portal. This liaison will facilitate glycomic analyses of human and other organisms in conjunction with multiomics data.


Subject(s)
Oligosaccharides , Polysaccharides , Chromatography, High Pressure Liquid/methods , Glycosylation , Humans , Oligosaccharides/chemistry , Polysaccharides/chemistry
10.
J Biomol NMR ; 76(1-2): 17-22, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34978013

ABSTRACT

Mammalian cells are widely used for producing recombinant glycoproteins of pharmaceutical interest. However, a major drawback of using mammalian cells is the high production costs associated with uniformly isotope-labeled glycoproteins due to the large quantity of labeled L-glutamine required for their growth. To address this problem, we developed a cost-saving method for uniform isotope labeling by cultivating the mammalian cells under glutamine-free conditions, which was achieved by co-expression of glutamine synthase. We demonstrate the utility of this approach using fucosylated and non-fucosylated Fc glycoforms of human immunoglobulin G1.


Subject(s)
Glutamine , Glycoproteins , Animals , Glycoproteins/chemistry , Humans , Immunoglobulins , Isotope Labeling/methods , Mammals , Nuclear Magnetic Resonance, Biomolecular , Recombinant Proteins/chemistry
11.
Int J Mol Sci ; 23(4)2022 Feb 14.
Article in English | MEDLINE | ID: mdl-35216207

ABSTRACT

Immunoglobulin G (IgG) adopts a modular multidomain structure that mediates antigen recognition and effector functions, such as complement-dependent cytotoxicity. IgG molecules are self-assembled into a hexameric ring on antigen-containing membranes, recruiting the complement component C1q. In order to provide deeper insights into the initial step of the complement pathway, we report a high-speed atomic force microscopy study for the quantitative visualization of the interaction between mouse IgG and the C1 complex composed of C1q, C1r, and C1s. The results showed that the C1q in the C1 complex is restricted regarding internal motion, and that it has a stronger binding affinity for on-membrane IgG2b assemblages than C1q alone, presumably because of the lower conformational entropy loss upon binding. Furthermore, we visualized a 1:1 stoichiometric interaction between C1/C1q and an IgG2a variant that lacks the entire CH1 domain in the absence of an antigen. In addition to the canonical C1q-binding site on Fc, their interactions are mediated through a secondary site on the CL domain that is cryptic in the presence of the CH1 domain. Our findings offer clues for novel-modality therapeutic antibodies.


Subject(s)
Complement C1/immunology , Immunoglobulin G/immunology , Protein Binding/immunology , Animals , Binding Sites/immunology , Complement Activation/immunology , Mice
12.
Int J Mol Sci ; 23(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35743105

ABSTRACT

The dystrophin-glycoprotein complex connects the cytoskeleton with base membrane components such as laminin through unique O-glycans displayed on α-dystroglycan (α-DG). Genetic impairment of elongation of these glycans causes congenital muscular dystrophies. We previously identified that glycerol phosphate (GroP) can cap the core part of the α-DG O-glycans and terminate their further elongation. This study examined the possible roles of the GroP modification in cancer malignancy, focusing on colorectal cancer. We found that the GroP modification critically depends on PCYT2, which serves as cytidine 5'-diphosphate-glycerol (CDP-Gro) synthase. Furthermore, we identified a significant positive correlation between cancer progression and GroP modification, which also correlated positively with PCYT2 expression. Moreover, we demonstrate that GroP modification promotes the migration of cancer cells. Based on these findings, we propose that the GroP modification by PCYT2 disrupts the glycan-mediated cell adhesion to the extracellular matrix and thereby enhances cancer metastasis. Thus, the present study suggests the possibility of novel approaches for cancer treatment by targeting the PCYT2-mediated GroP modification.


Subject(s)
Dystroglycans , Neoplasms , RNA Nucleotidyltransferases/metabolism , Dystroglycans/genetics , Dystroglycans/metabolism , Glycerol/metabolism , Glycerophosphates , Humans , Phosphates/metabolism , Polysaccharides/metabolism , Up-Regulation
13.
Biochem Biophys Res Commun ; 579: 8-14, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34583196

ABSTRACT

α-Dystroglycan (α-DG) is a glycoprotein specifically modified with O-mannosyl glycans bearing long polysaccharides, termed matriglycans, which comprise repeating units of glucuronic acid and xylose. The matriglycan is linked to the O-mannosyl glycan core through two ribitol phosphate units that can be replaced with glycerol phosphate (GroP) units synthesized by fukutin and fukutin-related protein that transfer GroP from CDP-Gro. Here, we found that forced expression of the bacterial CDP-Gro synthase, TagD, from Bacillus subtilis could result in the overproduction of CDP-Gro in human colon carcinoma HCT116 cells. Western blot and liquid chromatography-tandem mass spectrometry analyses indicated that α-DG prepared from the TagD-expressing HCT116 cells contained abundant GroP and lacked matriglycans. Using the GroP-containing recombinant α-DG-Fc, we developed a novel monoclonal antibody, termed DG2, that reacts with several truncated glycoforms of α-DG, including GroP-terminated glycoforms lacking matriglycans; we verified the reactivity of DG2 against various types of knockout cells deficient in the biosynthesis of matriglycans. Accordingly, forced expression of TagD in HCT116 cells resulted in the reduction of matriglycans and an increase in DG2 reactivity. Collectively, our results indicate that DG2 could serve as a useful tool to determine tissue distribution and function of α-DG lacking matriglycans under physiological and pathophysiological conditions.


Subject(s)
Antibodies, Monoclonal/chemistry , Dystroglycans/chemistry , Laminin/chemistry , Protein Isoforms/chemistry , Animals , Bacillus subtilis , CRISPR-Cas Systems , Chromatography, Liquid , DNA, Complementary/metabolism , Female , Glucuronic Acid/chemistry , Glycopeptides/chemistry , HCT116 Cells , Humans , Mass Spectrometry , Mice , Mice, Inbred BALB C , Phosphates , Polysaccharides , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Ribitol/chemistry , Xylose
14.
Phys Chem Chem Phys ; 23(16): 9753-9760, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33881019

ABSTRACT

Oligosaccharides play versatile roles in various biological systems but are difficult to characterize from a structural viewpoint due to their remarkable degrees of freedom in internal motion. Therefore, molecular dynamics simulations have been widely used to delineate the dynamic conformations of oligosaccharides. However, hardly any methods have thus far been available for the comprehensive characterization of simulation-derived conformational ensembles of oligosaccharides. In this research, we attempted to develop a non-linear multivariate analysis by employing a kernel method using two homologous high-mannose-type oligosaccharides composed of ten and eleven residues as model molecules. These oligosaccharides' conformers derived from simulations were mapped into reproductive kernel Hilbert space with a positive definite function in which all required non-redundant variables for describing the oligosaccharide conformations can be treated in a non-biased manner. By applying Gaussian mixture model clustering, the oligosaccharide conformers were successfully classified by different funnels in the free-energy landscape, enabling a systematic comparison of conformational ensembles of the homologous oligosaccharides. The results shed light on the contributions of intraresidue conformational factors such as the hydroxyl group orientation and/or ring puckering state to their global conformational dynamics. Our methodology will open opportunities to explore oligosaccharides' conformational spaces, and more generally, molecules with high degrees of motional freedom.


Subject(s)
Oligosaccharides/chemistry , Carbohydrate Conformation , Carbohydrate Sequence , Molecular Dynamics Simulation/statistics & numerical data , Multivariate Analysis , Thermodynamics
15.
Proc Natl Acad Sci U S A ; 115(11): 2758-2763, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29472449

ABSTRACT

Nrf2 plays critical roles in animals' defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.


Subject(s)
Endoplasmic Reticulum Stress , NF-E2-Related Factor 2/metabolism , Phosphotransferases (Phosphomutases)/genetics , Zebrafish Proteins/genetics , Zebrafish/metabolism , Animals , Glycosylation , Mutation , NF-E2-Related Factor 2/genetics , Phosphotransferases (Phosphomutases)/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
16.
Biochemistry ; 59(34): 3180-3185, 2020 09 01.
Article in English | MEDLINE | ID: mdl-31553574

ABSTRACT

We developed an approach to improve the lectin-binding affinity of an oligosaccharide by remodeling its conformational space in the precomplexed state. To develop this approach, we used a Lewis X-containing oligosaccharide interacting with RSL as a model system. Using an experimentally validated molecular dynamics simulation, we designed a Lewis X analogue with an increased population of conformational species that were originally very minor but exclusively accessible to the target lectin without steric hindrance by modifying the nonreducing terminal galactose, which does not directly contact the lectin in the complex. This Lewis X mimetic showed 17 times higher affinity for the lectin than the native counterpart. Our approach, complementing the lectin-bound-state optimizations, offers an alternative strategy to create high-affinity oligosaccharides by increasing populations of on-pathway metastable conformers.


Subject(s)
Lectins/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Binding Sites , Carbohydrate Conformation , Models, Molecular , Protein Binding
17.
Anal Chem ; 92(21): 14383-14392, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32881480

ABSTRACT

Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.

18.
J Biol Chem ; 293(39): 15163-15177, 2018 09 28.
Article in English | MEDLINE | ID: mdl-30093410

ABSTRACT

Sulfated glycans are known to be involved in several glycan-mediated cell adhesion and recognition pathways. Our mRNA transcript analyses on the genes involved in synthesizing GlcNAc-6-O-sulfated glycans in human colon cancer tissues indicated that GlcNAc6ST-2 (CHST4) is preferentially expressed in cancer cells compared with nonmalignant epithelial cells among the three known major GlcNAc-6-O-sulfotransferases. On the contrary, GlcNAc6ST-3 (CHST5) was only expressed in nonmalignant epithelial cells, whereas GlcNAc6ST-1 (CHST2) was expressed equally in both cancerous and nonmalignant epithelial cells. These results suggest that 6-O-sulfated glycans that are synthesized only by GlcNAc6ST-2 may be highly colon cancer-specific, as supported by immunohistochemical staining of cancer cells using the MECA-79 antibody known to be relatively specific to the enzymatic reaction products of GlcNAc6ST-2. By more precise MS-based sulfoglycomic analyses, we sought to further infer the substrate specificities of GlcNAc6STs via a definitive mapping of various sulfo-glycotopes and O-glycan structures expressed in response to overexpression of transfected GlcNAc6STs in the SW480 colon cancer cell line. By detailed MS/MS sequencing, GlcNAc6ST-3 was shown to preferentially add sulfate onto core 2-based O-glycan structures, but it does not act on extended core 1 structures, whereas GlcNAc6ST-1 prefers core 2-based O-glycans to extended core 1 structures. In contrast, GlcNAc6ST-2 could efficiently add sulfate onto both extended core 1- and core 2-based O-glycans, leading to the production of unique sulfated extended core 1 structures such as R-GlcNAc(6-SO3-)ß1-3Galß1-4GlcNAc(6-SO3-)ß1-3Galß1-3GalNAcα, which are good candidates to be targeted as cancer-specific glycans.


Subject(s)
Colonic Neoplasms/genetics , Polysaccharides/biosynthesis , RNA, Messenger/chemistry , Sulfotransferases/chemistry , Antigens, Surface/chemistry , Antigens, Surface/genetics , Cell Adhesion/genetics , Cell Line, Tumor , Colonic Neoplasms/chemistry , Colonic Neoplasms/pathology , Epithelial Cells/metabolism , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Polysaccharides/genetics , RNA, Messenger/genetics , Substrate Specificity , Sulfates/chemistry , Sulfotransferases/genetics , Tandem Mass Spectrometry , Carbohydrate Sulfotransferases
19.
Int J Mol Sci ; 20(18)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540310

ABSTRACT

The central oscillator generating cyanobacterial circadian rhythms comprises KaiA, KaiB, and KaiC proteins. Their interactions cause KaiC phosphorylation and dephosphorylation cycles over approximately 24 h. KaiB interacts with phosphorylated KaiC in competition with SasA, an output protein harboring a KaiB-homologous domain. Structural data have identified KaiB-KaiC interaction sites; however, KaiB mutations distal from the binding surfaces can impair KaiB-KaiC interaction and the circadian rhythm. Reportedly, KaiB and KaiC exclusively form a complex in a 6:6 stoichiometry, indicating that KaiB-KaiC hexamer binding shows strong positive cooperativity. Here, mutational analysis was used to investigate the functional significance of this cooperative interaction. Results demonstrate that electrostatic complementarity between KaiB protomers promotes their cooperative assembly, which is indispensable for accurate rhythm generation. SasA does not exhibit such electrostatic complementarity and noncooperatively binds to KaiC. Thus, the findings explain KaiB distal mutation effects, providing mechanistic insights into clock protein interplay.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Circadian Rhythm Signaling Peptides and Proteins/chemistry , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Cyanobacteria/physiology , Bacterial Proteins/genetics , Binding Sites , Circadian Clocks , Circadian Rhythm Signaling Peptides and Proteins/genetics , Cyanobacteria/metabolism , Gene Expression Regulation, Bacterial , Models, Molecular , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Protein Conformation , Protein Multimerization
20.
Int J Mol Sci ; 21(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878295

ABSTRACT

Guillain-Barré syndrome, an autoimmune neuropathy characterized by acute limb weakness, is often preceded by Campylobacter jejuni infection. Molecular mimicry exists between the bacterial lipo-oligosaccharide and human ganglioside. Such C. jejuni infection induces production of immunoglobulin G1 (IgG1) autoantibodies against GM1 and causes complement-mediated motor nerve injury. For elucidating the molecular mechanisms linking autoantigen recognition and complement activation, we characterized the dynamic interactions of anti-GM1 IgG autoantibodies on ganglioside-incorporated membranes. Using high-speed atomic force microscopy, we found that the IgG molecules assemble into a hexameric ring structure on the membranes depending on their specific interactions with GM1. Complement component C1q was specifically recruited onto these IgG rings. The ring formation was inhibited by an IgG-binding domain of staphylococcal protein A bound at the cleft between the CH2 and CH3 domains. These data indicate that the IgG assembly is mediated through Fc-Fc interactions, which are promoted under on-membrane conditions due to restricted translational diffusion of IgG molecules. Reduction and alkylation of the hinge disulfide impaired IgG ring formation, presumably because of an increase in conformational entropic penalty. Our findings provide mechanistic insights into the molecular processes involved in Guillain-Barré syndrome and, more generally, into antigen-dependent interplay between antibodies and complement components on membranes.


Subject(s)
Complement C1q/metabolism , G(M1) Ganglioside/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Guillain-Barre Syndrome/immunology , Guillain-Barre Syndrome/metabolism , Humans , Microscopy, Atomic Force , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL