Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Methods ; 19(10): 1250-1261, 2022 10.
Article in English | MEDLINE | ID: mdl-36192463

ABSTRACT

Biological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework. Our method, BIONIC (Biological Network Integration using Convolutions), learns features that contain substantially more functional information compared to existing approaches. BIONIC has unsupervised and semisupervised learning modes, making use of available gene function annotations. BIONIC is scalable in both size and quantity of the input networks, making it feasible to integrate numerous networks on the scale of the human genome. To demonstrate the use of BIONIC in identifying new biology, we predicted and experimentally validated essential gene chemical-genetic interactions from nonessential gene profiles in yeast.


Subject(s)
Algorithms , Bionics , Genome, Human , Humans , Molecular Sequence Annotation
2.
J Biol Chem ; 297(4): 101179, 2021 10.
Article in English | MEDLINE | ID: mdl-34508782

ABSTRACT

We previously reported that dietary amino acid restriction induces the accumulation of triglycerides (TAG) in the liver of growing rats. However, differences in TAG accumulation in individual cell types or other tissues were not examined. In this study, we show that TAG also accumulates in the muscle and adipose tissues of rats fed a low amino acid (low-AA) diet. In addition, dietary lysine restriction (low-Lys) induces lipid accumulation in muscle and adipose tissues. In adjusting the nitrogen content to that of the control diet, we found that glutamic acid supplementation to the low-AA diet blocked lipid accumulation, but supplementation with the low-Lys diet did not, suggesting that a shortage of nitrogen caused lipids to accumulate in the skeletal muscle in the rats fed a low-AA diet. Serum amino acid measurement revealed that, in rats fed a low-Lys diet, serum lysine levels were decreased, while serum threonine levels were significantly increased compared with the control rats. When the threonine content was restricted in the low-Lys diet, TAG accumulation induced by the low-Lys diet was completely abolished in skeletal muscle. Moreover, in L6 myotubes cultured in medium containing high threonine and low lysine, fatty acid uptake was enhanced compared with that in cells cultured in control medium. These findings suggest that the increased serum threonine in rats fed a low-Lys diet resulted in lipid incorporation into skeletal muscle, leading to the formation of fatty muscle tissue. Collectively, we propose conceptual hypothesis that "amino-acid signal" based on lysine and threonine regulates lipid metabolism.


Subject(s)
Lipid Metabolism , Lysine/deficiency , Threonine/blood , Triglycerides/metabolism , Adipose Tissue/metabolism , Animals , Cells, Cultured , Liver/metabolism , Male , Muscle, Skeletal/metabolism , Organ Specificity , Rats , Rats, Wistar
3.
J Clin Immunol ; 42(2): 336-349, 2022 02.
Article in English | MEDLINE | ID: mdl-34791587

ABSTRACT

BACKGROUND: CARD9 deficiency is an autosomal recessive primary immunodeficiency underlying increased susceptibility to fungal infection primarily presenting as invasive CNS Candida and/or cutaneous/invasive dermatophyte infections. More recently, a rare heterozygous dominant negative CARD9 variant c.1434 + 1G > C was reported to be protective from inflammatory bowel disease. OBJECTIVE: We studied two siblings carrying homozygous CARD9 variants (c.1434 + 1G > C) and born to heterozygous asymptomatic parents. One sibling was asymptomatic and the other presented with candida esophagitis, upper respiratory infections, hypogammaglobulinemia, and low class-switched memory B cells. METHODS AND RESULTS: The CARD9 c.1434 + 1G > C variant generated two mutant transcripts confirmed by mRNA and protein expression: an out-of-frame c.1358-1434 deletion/ ~ 55 kDa protein (CARD9Δex.11) and an in-frame c.1417-1434 deletion/ ~ 61 kDa protein (CARD9Δ18 nt.). Neither transcript was able to form a complete/functional CBM complex, which includes TRIM62. Based on the index patient's CVID-like phenotype, CARD9 expression was tested and detected in lymphocytes and monocytes from humans and mice. The functional impact of different CARD9 mutations and gene dosage conditions was evaluated in heterozygous and homozygous c.1434 + 1 G > C members of the index family, and in WT (two WT alleles), haploinsufficiency (one WT, one null allele), and null (two null alleles) individuals. CARD9 gene dosage impacted lymphocyte and monocyte functions including cytokine generation, MAPK activation, T-helper commitment, transcription, plasmablast differentiation, and immunoglobulin production in a differential manner. CONCLUSIONS: CARD9 exon 11 integrity is critical to CBM complex function. CARD9 is expressed and affects particular T and B cell functions in a gene dosage-dependent manner, which in turn may contribute to the phenotype of CARD9 deficiency.


Subject(s)
Candidiasis, Chronic Mucocutaneous , Alleles , Animals , CARD Signaling Adaptor Proteins/genetics , Gene Dosage , Homozygote , Humans , Mice , Phenotype
4.
J Biol Chem ; 295(16): 5362-5376, 2020 04 17.
Article in English | MEDLINE | ID: mdl-32132174

ABSTRACT

ß-1,3-d-Glucan is a ubiquitous glucose polymer produced by plants, bacteria, and most fungi. It has been used as a diagnostic tool in patients with invasive mycoses via a highly-sensitive reagent consisting of the blood coagulation system of horseshoe crab. However, no method is currently available for measuring ß-1,6-glucan, another primary ß-glucan structure of fungal polysaccharides. Herein, we describe the development of an economical and highly-sensitive and specific assay for ß-1,6-glucan using a modified recombinant endo-ß-1,6-glucanase having diminished glucan hydrolase activity. The purified ß-1,6-glucanase derivative bound to the ß-1,6-glucan pustulan with a KD of 16.4 nm We validated the specificity of this ß-1,6-glucan probe by demonstrating its ability to detect cell wall ß-1,6-glucan from both yeast and hyphal forms of the opportunistic fungal pathogen Candida albicans, without any detectable binding to glucan lacking the long ß-1,6-glucan branch. We developed a sandwich ELISA-like assay with a low limit of quantification for pustulan (1.5 pg/ml), and we successfully employed this assay in the quantification of extracellular ß-1,6-glucan released by >250 patient-derived strains of different Candida species (including Candida auris) in culture supernatant in vitro We also used this assay to measure ß-1,6-glucan in vivo in the serum and in several organs in a mouse model of systemic candidiasis. Our work describes a reliable method for ß-1,6-glucan detection, which may prove useful for the diagnosis of invasive fungal infections.


Subject(s)
Biosensing Techniques/methods , Fungal Polysaccharides/chemistry , Glycoside Hydrolases/metabolism , Polysaccharides/analysis , beta-Glucans/analysis , Animals , Candida/metabolism , Enzyme Assays/methods , Female , Fungal Polysaccharides/metabolism , Glycoside Hydrolases/genetics , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Polysaccharides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , beta-Glucans/metabolism
5.
Int J Mol Sci ; 22(4)2021 Feb 04.
Article in English | MEDLINE | ID: mdl-33557290

ABSTRACT

ß-Glucan is widely distributed in various plants and microorganisms and is composed of ß-1,3-linked d-glucose units. It may have a branched short or long side chain of glucose units with ß-1,6- or ß-1,4-linkage. Numerous studies have investigated different ß-glucans and revealed their bioactivities. To understand the structure-function relationship of ß-glucan, we constructed a split-luciferase complementation assay for the structural analysis of long-chain ß-1,6-branched ß-1,3-glucan. The N- and C-terminal fragments of luciferase from deep-sea shrimp were fused to insect-derived ß-1,3-glucan recognition protein and fungal endo-ß-1,6-glucanase (Neg1)-derived ß-1,6-glucan recognition protein, respectively. In this approach, two ß-glucan recognition proteins bound to ß-glucan molecules come into close proximity, resulting in the assembly of the full-length reporter enzyme and induction of transient luciferase activity, indicative of the structure of ß-glucan. To test the applicability of this assay, ß-glucan and two ß-glucan recognition proteins were mixed, resulting in an increase in the luminescence intensity in a ß-1,3-glucan with a long polymer of ß-1,6-glucan in a dose-dependent manner. This simple test also allows the monitoring of real-time changes in the side chain structure and serves as a convenient method to distinguish between ß-1,3-glucan and long-chain ß-1,6-branched ß-1,3-glucan in various soluble and insoluble ß-glucans.


Subject(s)
Biosensing Techniques/methods , Cell Wall/metabolism , Glycoside Hydrolases/metabolism , beta-Glucans/chemistry , beta-Glucans/metabolism , Animals , Luciferases/metabolism , Substrate Specificity
6.
Int J Mol Sci ; 22(11)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205910

ABSTRACT

To overcome the limitations of the Limulus amebocyte lysate (LAL) assay method for the diagnosis of invasive fungal infection, we applied a reaction system combining recombinant ß-glucan binding proteins and a scanning single-molecule counting (SSMC) method. A novel (1→3)-ß-D-glucan recognition protein (S-BGRP) and a (1→6)-ß-glucanase mutant protein were prepared and tested for the binding of (1→6)-branched (1→3)-ß-D-glucan from fungi. S-BGRP and (1→6)-ß-glucanase mutant proteins reacted with ß-glucan from Candida and Aspergillus spp. Although LAL cross-reacted with plant-derived ß-glucans, the new detection system using the SSMC method showed low sensitivity to plant (1→3)-ß-D-glucan, which significantly improved the appearance of false positives, a recognized problem with the LAL method. Measurement of ß-glucan levels by the SSMC method using recombinant ß-glucan-binding proteins may be useful for the diagnosis of fungal infections. This study shows that this detection system could be a new alternative diagnostic method to the LAL method.


Subject(s)
Biosensing Techniques , Endotoxins/isolation & purification , Mycoses/diagnosis , beta-Glucans/isolation & purification , Aspergillus/chemistry , Aspergillus/isolation & purification , Aspergillus/pathogenicity , Candida/chemistry , Candida/isolation & purification , Candida/pathogenicity , Endotoxins/chemistry , Humans , Mycoses/microbiology , Single Molecule Imaging , beta-Glucans/chemistry
7.
Int J Mol Sci ; 22(4)2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33669963

ABSTRACT

Because Japanese cedar pollen (JCP) contains beta-1,3-d-glucan (BG), there is concern that its lingering presence in the atmosphere, especially during its scattering period, may cause false positives in the factor-G-based Limulus amebocyte lysate (LAL) assay used to test for deep mycosis (i.e., G-test). Hence, we examined whether the LAL assay would react positively with substances contained in JCP by using the G-test to measure JCP particles and extracts. BG was purified from the JCP extract on a BG-specific affinity column, and the percentage extractability was measured using three different BG-specific quantitative methods. The G-test detected 0.4 pg BG in a single JCP particle and 10 fg from a single particle in the extract. The percentage extractability of JCP-derived BG was not significantly different among the three quantitative methods. As the JCP particles should technically have been removed during serum separation, they should be less likely to be a direct false-positive factor. However, given that the LAL-assay-positive substances in the JCP extract were not distinguishable by the three BG-specific quantitative methods, we conclude that they may cause the background to rise. Therefore, in Japan false positives arising from JCP contamination should be considered when testing patients for deep mycosis.


Subject(s)
Cryptomeria/immunology , Mycoses/diagnosis , Pollen/immunology , False Positive Reactions , Hydrogen-Ion Concentration , Lectins, C-Type/metabolism , beta-Glucans/metabolism
8.
Allergol Int ; 70(1): 105-113, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32919904

ABSTRACT

BACKGROUND: The pollen grains of several plant species contain 1,3-ß-D-glucan (BG). BG activates dendritic cells (DCs) and subsequently regulates the innate immune responses. Within Japan, the most common disease associated with type-I hypersensitivity is Japanese cedar pollinosis. However, the role of BG in Japanese cedar pollen (JCP) remains unclear. This study examined the localization and immunological effects of BG in JCP. METHODS: The localization of BG in JCP grain was determined by immunohistochemical staining using a soluble dectin-1 protein probe and a BG recognition protein (BGRP). The content of BG extracted from JCP was measured by a BGRP-based ELISA-like assay. The cytokine production by bone marrow-derived DCs (BMDCs) obtained from wild-type and BG receptor (dectin-1) knock-out mice was examined in vitro. The mice were intranasally administered JCP grains and the specific serum Ig levels were then quantified. RESULTS: BG was detected in the exine and cell wall of the generative cell and tube cell of the JCP grain. Moreover, BG in the exine stimulated production of TNF-α and IL-6 in the BMDCs via a dectin-1-dependent mechanism. Meanwhile, JCP-specific IgE and IgG were detected in the serum of wild-type mice that had been intranasally administered with JCP grains. These mice also exhibited significantly enhanced sneezing behavior. However, dectin-1 knock-out mice exhibited significantly lower JCP-specific IgE and IgG levels compared to wild-type mice. CONCLUSIONS: Latent BG in JCP can act as an adjuvant to induce JCP-specific antibody production via dectin-1.


Subject(s)
Adjuvants, Immunologic , Cryptomeria/adverse effects , Environmental Exposure/adverse effects , Glucans , Immunoglobulin E/immunology , Pollen/immunology , Rhinitis, Allergic, Seasonal/immunology , Animals , Antibody Formation/immunology , Antibody Specificity/immunology , Antigens, Plant/immunology , Biomarkers , Humans , Immunoglobulin E/blood , Immunoglobulin G/immunology , Mice , Rhinitis, Allergic, Seasonal/diagnosis
9.
Biol Pharm Bull ; 43(5): 848-858, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32161223

ABSTRACT

Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances, such as the hot water extract of C. albicans (CADS) and Candida water-soluble fraction (CAWS), induced coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the hot water extract of C. krusei, inherently resistant to fluconazole, induces vasculitis in mice. Three strains of C. krusei, NBRC1395, NBRC1162, and NBRC10737, were cultured in natural (Y) and chemically defined (C) media and cell wall mannoprotein (MN) fractions were prepared by autoclaving cells (CKY1395MN, CKC1395MN, CKY1162MN, CKC1162MN, CKY10737MN, and CKC10737MN). All MN fractions reacted strongly with Concanavalin A (Con A) and dectin-2 and induced anaphylactoid shock in ICR mice. MNs induced severe coronary vasculitis in DBA/2 mice, resulting in cardiac hypertrophy. MNs also induced coronary vasculitis in C57Bl/6 mice. These results suggest that the MNs of non-albicans Candida, such as C. krusei, induce similar toxicity to those of C. albicans.


Subject(s)
Candida albicans , Membrane Glycoproteins/toxicity , Pichia , Vasculitis/chemically induced , Anaphylaxis/chemically induced , Anaphylaxis/pathology , Animals , Cell Wall , Coronary Vessels/pathology , Male , Mice, Inbred Strains , Myocardium/pathology , Vasculitis/pathology
10.
Int J Mol Sci ; 20(14)2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31315292

ABSTRACT

Recognition of (1→3)-ß-d-glucans (BGs) by invertebrate ß-1,3-d-glucan recognition protein (BGRP) plays a significant role in the activation of Toll pathway and prophenoloxidase systems in insect host defense against fungal invasion. To examine the structure diversity of BGRPs for the recognition of physiochemically different BGs, the binding specificity of BGRPs cloned from four different insects to structure different BGs was characterized using ELISA. Recombinant BGRPs expressed as Fc-fusion proteins of human IgG1 bound to the solid phase of BGs. Based on the binding specificities, the BGRPs were categorized into two groups with different ultrastructures and binding characters; one group specifically binds BGs with triple-helical conformation, while the other group recognizes BGs with disordered conformations like single-helical or partially opened triple helix. The BGRPs from the silkworm and the Indian meal moth bound to the BGs with a triple-helical structure, whereas BGRPs from the red flour beetle and yellow mealworm beetle showed no binding to triple-helical BGs, but bound to alkaline-treated BGs that have a partially opened triple-helical conformation. This evidence suggests that the insect BGRPs can distinguish between different conformations of BGs and are equipped for determining the diversity of BG structures.


Subject(s)
Carrier Proteins/metabolism , Insect Proteins/metabolism , Binding Sites , Carrier Proteins/chemistry , Insect Proteins/chemistry , Protein Binding , Proteoglycans , Substrate Specificity , beta-Glucans/chemistry , beta-Glucans/metabolism
11.
Biochem Biophys Res Commun ; 495(3): 2209-2213, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29269293

ABSTRACT

Various physiologically active effects of polymerized polyphenols have been reported. In this study, we synthesized a polymerized polyphenol (mL2a-pCA) by polymerizing caffeic acid using mutant Agaricus brasiliensis laccase and analyzed its physiological activity and mechanism of action. We found that mL2a-pCA induced morphological changes and the production of cytokines and chemokines in C3H/HeN mouse-derived resident peritoneal macrophages in vitro. The mechanisms of action of polymerized polyphenols on in vitro mouse resident peritoneal cells have not been characterized in detail previously. Herein, we report that the mL2a-pCA-induced production of interleukin-6 (IL-6) and monocyte chemotactic protein-1 (MCP-1) in C3H/HeN mouse-derived resident peritoneal cells was inhibited by treatment with the Rac1 inhibitor NSC23766 trihydrochloride. In addition, we found that mL2a-pCA activated the phosphorylation Rac1. Taken together, the results show that mL2a-pCA induced macrophage activation via Rac1 phosphorylation-dependent pathways.


Subject(s)
Laccase/chemistry , Macrophage Activation/immunology , Macrophages/immunology , Macrophages/pathology , Neuropeptides/immunology , Polyphenols/administration & dosage , Polyphenols/chemistry , rac1 GTP-Binding Protein/immunology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Enzyme Activation , Macrophage Activation/drug effects , Macrophages/drug effects , Male , Mice , Mice, Inbred C3H , Phosphorylation/drug effects
12.
Mol Pharm ; 15(9): 4226-4234, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30107747

ABSTRACT

Infections remain a major threat to human lives. To overcome the threat caused by pathogens, mucosal vaccines are considered a promising strategy. However, no inactivated and/or subunit mucosal vaccine has been approved for human use, largely because of the lack of a safe and effective mucosal adjuvant. Here, we show that enzymatically synthesized polymeric caffeic acid (pCA) can act as a potent mucosal adjuvant in mice. Intranasal administration of ovalbumin (OVA) in combination with pCA resulted in the induction of OVA-specific mucosal IgA and serum IgG, especially IgG1. Importantly, pCA was synthesized from caffeic acid and horseradish peroxidase from coffee beans and horseradish, respectively, which are commonly consumed. Therefore, pCA is believed to be a highly safe material. In fact, administration of pCA did not show distinct toxicity in mice. These data indicate that pCA has merit for use as a mucosal adjuvant for nasal vaccine formulations.


Subject(s)
Adjuvants, Immunologic/chemistry , Caffeic Acids/chemistry , Caffeic Acids/immunology , Animals , Armoracia/chemistry , Cell Migration Assays, Leukocyte , Coffee/chemistry , Enzyme-Linked Immunosorbent Assay , Female , Horseradish Peroxidase/metabolism , Immunoglobulin A/metabolism , Immunoglobulin G/blood , Lignin/metabolism , Liposomes/administration & dosage , Liposomes/chemistry , Mice , Mice, Inbred BALB C
13.
J Neurochem ; 140(4): 605-612, 2017 02.
Article in English | MEDLINE | ID: mdl-27973680

ABSTRACT

Prostaglandin E2 (PGE2 ) plays crucial roles in managing microglial activation through the prostanoid EP2 receptor, a PGE2 receptor subtype. In this study, we report that PGE2 enhances interferon-γ (IFN-γ)-induced nitric oxide production in microglia. IFN-γ increased the release of nitrite, a metabolite of nitric oxide, which was augmented by PGE2 , although PGE2 by itself slightly affects nitrite release. The potentiating effect of PGE2 was positively associated with increased expression of inducible nitric oxide synthase. In contrast to nitrite release induced by IFN-γ, lipopolysaccharide-induced nitrite release was not affected by PGE2 . An EP2 agonist, ONO-AE1-259-01 also augmented IFN-γ-induced nitrite release, while an EP1 agonist, ONO-DI-004, an EP3 agonist, ONO-AE-248, or an EP4 agonist, ONO-AE1-329, did not. In addition, the potentiating effect of PGE2 was inhibited by an EP2 antagonist, PF-04418948, but not by an EP1 antagonist, ONO-8713, an EP3 antagonist, ONO-AE3-240, or an EP4 antagonist, ONO-AE3-208, at 10-6  M. Among the EP agonists, ONO-AE1-259-01 alone was able to accumulate cyclic adenosine monophosphate (AMP), and among the EP antagonists, PF-04418948 was the only one able to inhibit PGE2 -increased intracellular cyclic AMP accumulation. On the other hand, IFN-γ promoted phosphorylation of signal transducer and activator of transcription 1, which was not affected by PGE2 . Furthermore, other prostanoid receptor agonists, PGD2 , PGF2α , iloprost, and U-46119, slightly affected IFN-γ-induced nitrite release. These results indicate that PGE2 potentiates IFN-γ-induced nitric oxide production in microglia through the EP2 receptor, which may shed light on one of the pro-inflammatory aspects of PGE2 .


Subject(s)
Dinoprostone/administration & dosage , Interferon-gamma/administration & dosage , Microglia/drug effects , Microglia/metabolism , Nitric Oxide/agonists , Nitric Oxide/biosynthesis , Animals , Animals, Newborn , Cells, Cultured , Dose-Response Relationship, Drug , Drug Synergism , Female , Male , Nitric Oxide Synthase Type II/biosynthesis , Nitrites/metabolism , Rats , Rats, Wistar
14.
Eur J Neurosci ; 42(6): 2356-70, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26174228

ABSTRACT

Brain edema is a potentially fatal pathological state that often occurs after brain injuries such as ischemia and trauma. However, therapeutic agents that fundamentally treat brain edema have not yet been established. We previously found that endothelin ETB receptor antagonists attenuate the formation and maintenance of vasogenic brain edema after cold injury in mice. In this study, the effects of ETB antagonists on matrixmetalloproteinase (MMP)9 and vascular endothelial growth factor (VEGF)-A expression were examined in the cold injury model. Cold injury was performed in the left brain of male ddY mice (5-6 weeks old) for the induction of vasogenic edema. Expression of MMP9 and VEGF-A mRNA in the mouse cerebrum was increased by cold injury. Immunohistochemical observations showed that the MMP9 and VEGF-A were mainly produced in reactive astrocytes in the damaged cerebrum. Intracerebroventricular administration of BQ788 (10 µg) or IRL-2500 (10 µg) (selective ETB antagonists) attenuated brain edema and disruption of the blood-brain barrier after cold injury. BQ788 and IRL-2500 reversed the cold injury-induced increases in MMP9 and VEGF-A expression. The induction of reactive astrocytes producing MMP9 and VEGF-A in the damaged cerebrum was attenuated by BQ788 and IRL-2500. These results suggest that attenuations of astrocytic MMP9 and VEGF-A expression by ETB antagonists may be involved in the amelioration of vasogenic brain edema.


Subject(s)
Brain Edema/metabolism , Cerebrum/metabolism , Cold Injury/metabolism , Endothelin B Receptor Antagonists/administration & dosage , Matrix Metalloproteinase 9/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Astrocytes/metabolism , Biphenyl Compounds/administration & dosage , Brain Edema/prevention & control , Cerebrum/injuries , Cold Injury/prevention & control , Dipeptides/administration & dosage , Injections, Intraventricular , Male , Mice , Oligopeptides/administration & dosage , Piperidines/administration & dosage
15.
J Cell Sci ; 125(Pt 7): 1693-705, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22328518

ABSTRACT

Maintenance of tissue boundaries is crucial for control of metastasis. We describe a new signalling pathway in which epithelial cell disruption can be minimised and thereby restricts epithelial-mesenchymal transgressions. This involves the release of insulin-like growth factor (IGF)-binding protein 5 (IGFBP5) from apoptotic cells, which increases the adhesion of epithelial cells on mesenchymal but not epithelial extracellular matrix (ECM), and involves the direct interaction of IGFBP5 and α2ß1 integrins. IGFBP5 also induced cell adhesion to vitronectin in the absence of αVß3 integrin, the vitronectin receptor, again through an α2ß1-integrin-dependent action, suggesting that IGFBP5 can induce spreading on matrices, even in the absence of the integrins normally used in this process. Using IGFBP5 mutants we demonstrate that the effect is IGF-independent but requires the heparin-binding domain in the C-terminus of IGFBP5. A truncated mutant containing only the C-terminal of IGFBP5 also induced adhesion. Adhesion induced by IGFBP5 was dependent on Cdc42 and resulted in activation of integrin-linked kinase (ILK) and Akt. Consistent with these changes, IGFBP5 facilitated prolonged cell survival in nutrient-poor conditions and decreased phosphorylation of the stress-activated kinase p38 MAPK (MAPK14). Whereas IGFBP5 enhanced adhesion, it inhibited cell migration, although this was not evident using the truncated C-terminal mutant, suggesting that effects of IGFBP5 on adhesion and migration involve different mechanisms. We anticipate that these responses to IGFBP5 would reduce the metastatic potential of cells.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Movement , Insulin-Like Growth Factor Binding Protein 5/metabolism , Cell Adhesion , Cell Survival , Female , Humans , Insulin-Like Growth Factor Binding Protein 5/genetics , MCF-7 Cells
16.
Biochem Biophys Res Commun ; 443(2): 505-10, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24333872

ABSTRACT

Nucleoside transport is important for nucleic acid synthesis in cells that cannot synthesize nucleosides de novo, and for entry of many cytotoxic nucleoside analog drugs used in chemotherapy. This study demonstrates that various steroid hormones induce inhibition of nucleoside transport in mammalian cells. We analyzed the inhibitory effects of estradiol (E2) on nucleoside transport using SH-SY5Y human neuroblastoma cells. We observed inhibitory effects after acute treatment with E2, which lasted in the presence of E2. However, when E2 was removed, the effect immediately disappeared, suggesting that E2 effects are not mediated through the canonical regulatory pathway of steroid hormones, such as transcriptional regulation. We also discovered that E2 could competitively inhibit thymidine uptake and binding of the labeled nucleoside transporter inhibitor, S-[4-nitrobenzyl]-6-thioinosine (NBTI), indicating that E2 binds to endogenous nucleoside transporters, leading to inhibition of nucleoside transport. We then tested the effects of various steroids on nucleoside uptake in NBTI-sensitive cells, SH-SY5Y and NBTI-insensitive cells H9c2 rat cardiomyoblasts. We found E2 and progesterone clearly inhibited both NBTI-sensitive and insensitive uptake at micromolar concentrations. Taken together, we concluded that steroid hormones function as novel nucleoside transport inhibitors by competition with nucleosides for their transporters.


Subject(s)
Estradiol/administration & dosage , Myocytes, Cardiac/metabolism , Neuroblastoma/metabolism , Nucleoside Transport Proteins/antagonists & inhibitors , Nucleoside Transport Proteins/metabolism , Nucleosides/metabolism , Progesterone/administration & dosage , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Gonadal Steroid Hormones/administration & dosage , Humans , Myocytes, Cardiac/drug effects , Rats
17.
BMC Complement Altern Med ; 14: 454, 2014 Nov 24.
Article in English | MEDLINE | ID: mdl-25418207

ABSTRACT

BACKGROUND: Agaricus brasiliensis (A. brasiliensis) is a medicinal mushroom that exerts various pharmacological actions. We previously demonstrated that different cultivation conditions altered the activity of the polyphenol-related enzymes from this mushroom. However, the influence of cultivation conditions on the antioxidant activity of the fruiting bodies remains unclear. Therefore, in this study we compared the antioxidative effects of fruiting bodies of A. brasiliensis cultivated outdoors and indoors. In addition, we assessed whether different cultivation methods affected the hepatoprotective effects against CCl4-induced liver injury. METHODS: We assessed the antioxidative effects of mushrooms cultivated in open-air or indoors using the DPPH radical-scavenging assay. Furthermore, we prepared experimental feeds containing outdoor- or indoor-cultivated A. brasiliensis. Acute liver injury was induced by CCl4 injection in mice that consumed feed containing outdoor- or indoor-cultivated A. brasiliensis. The hepatoprotective effects of these mushrooms were then evaluated by monitoring the reduction in the circulating levels of alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase. The significance of the differences between the means was assessed using Student's t-test. Finally, histopathological analysis of liver was performed. RESULTS: In the DPPH assay, the antioxidant activity of outdoor-cultivated A. brasiliensis was higher than that of indoor-cultivated mushroom. Moreover, in the mouse model of CCl4-induced hepatitis, the oral administration of outdoor-cultivated A. brasiliensis reduced liver damage significantly, but indoor-cultivated mushrooms failed to inhibit hepatitis. The hepatoprotective effects of outdoor-cultivated A. brasiliensis were observed even when ingestion commenced only 1 day before CCl4 injection, and these effects were not affected by excessive heat treatment. CONCLUSIONS: Outdoor cultivation significantly enhanced the antioxidative activity of A. brasiliensis fruiting bodies. In addition, outdoor-cultivated A. brasiliensis was more effective at protecting against CCl4-induced liver injury in mice than mushrooms grown in a greenhouse.


Subject(s)
Agaricus/chemistry , Agriculture/methods , Antioxidants/therapeutic use , Biological Products/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Liver/drug effects , Alanine Transaminase/blood , Animals , Antioxidants/pharmacology , Aspartate Aminotransferases/blood , Biological Products/pharmacology , Biphenyl Compounds/metabolism , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/blood , Fruiting Bodies, Fungal , Hepatitis/blood , Hepatitis/drug therapy , L-Lactate Dehydrogenase/blood , Liver/enzymology , Male , Mice, Inbred ICR , Oxidation-Reduction , Picrates/metabolism , Polyphenols/pharmacology , Protective Agents/pharmacology , Protective Agents/therapeutic use
18.
Pol J Microbiol ; 63(2): 223-30, 2014.
Article in English | MEDLINE | ID: mdl-25115117

ABSTRACT

To investigate whether cell wall mannan from Candida metapsilosis induces vasculitis similar to that in Kawasaki syndrome and anaphylactoid shock in mice, we examined the pathogenic effects of C. metapsilosis cell wall extracts. Our results show that intraperitoneal injection of cell wall extracts induced severe coronary arteritis, and intravenous injection induced acute anaphylactoid shock similar to extracts from Candida albicans (C. albicans). Structural analysis of cell wall mannan from C. metapsilosis using NMR spectroscopy showed it to contain only a-mannan, indicating that a-mannan might be contributing to Candida pathogenicity by inducing coronary arteritis and acute shock.


Subject(s)
Anaphylaxis/microbiology , Candida/immunology , Cell Extracts/immunology , Cell Wall/immunology , Vasculitis/microbiology , Anaphylaxis/immunology , Anaphylaxis/pathology , Animals , Candida/chemistry , Candida albicans/chemistry , Candida albicans/immunology , Cell Extracts/chemistry , Cell Wall/chemistry , Coronary Vessels/immunology , Coronary Vessels/microbiology , Coronary Vessels/pathology , Humans , Male , Mice , Mice, Inbred DBA , Mice, Inbred ICR , Vasculitis/immunology , Vasculitis/pathology
19.
Int J Med Mushrooms ; 26(6): 13-23, 2024.
Article in English | MEDLINE | ID: mdl-38801085

ABSTRACT

Brazil-grown outdoor-cultivated Agaricus brasiliensis KA21 fruiting body (KA21) significantly increases the production of serum anti-beta-glucan antibody. Therefore, KA21 ingestion may be useful for the prevention and alleviation of fungal infections. This study aimed to determine the effects of KA21 in fungal infections in animals. KA21 was administered to nine dogs infected with Malassezia. Notably, the anti-beta-glucan antibody titer remained unchanged or tended to decrease in the oral steroid arm, whereas in the non-steroid arm, antibody titer increased in almost all animals after KA21 ingestion. Dogs showing improved clinical symptoms exhibited increased anti-beta-glucan antibody titers. The results of this study suggest that KA21 ingestion may alleviate the symptoms of Malassezia and other fungal infections and that continuous ingestion may help prolong recurrence-free intervals. Additionally, the ingestion of KA21 during oral steroid dosage reduction or discontinuation may enable smoother steroid withdrawal.


Subject(s)
Agaricus , Dog Diseases , Fruiting Bodies, Fungal , Malassezia , Animals , Dogs , Agaricus/chemistry , Fruiting Bodies, Fungal/chemistry , Malassezia/drug effects , Dog Diseases/microbiology , Dog Diseases/drug therapy , Dermatomycoses/veterinary , Dermatomycoses/prevention & control , Dermatomycoses/drug therapy , Dermatomycoses/microbiology , beta-Glucans/administration & dosage , beta-Glucans/pharmacology , Male , Brazil , Dermatitis/drug therapy , Dermatitis/veterinary , Dermatitis/microbiology , Dermatitis/prevention & control , Female , Antibodies, Fungal/blood
20.
Curr Dev Nutr ; 8(6): 103768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38939648

ABSTRACT

Background: It is generally accepted that excessive fat intake has undesirable effects on the energy metabolism of our body. Dietary amino acid composition is also critical to the regulation of lipid metabolism. Objectives: This study aimed to investigate whether high-fat diets (HFDs) with different amino acid deficiencies lead to different metabolic outcomes. Methods: Six-wk-old male Wistar rats were fed either a control diet (CN; 3.7 kcal/g, 12% calories from fat) or HFDs (5.1 kcal/g, 60% calories from fat) with 7 different amino acid compositions [control or methionine, arginine, histidine, lysine, threonine, or branched-chain amino acids (BCAAs) deficient], for 7 d. Tissue weights and lipid accumulation in the liver, skeletal muscle, and adipose tissue were measured, and serum biochemical parameters were analyzed. Results: Although the food intake of the HFD groups was a little less than that of the CN group, the total calorie intakes were comparable among the groups, except for histidine-deficient and BCAA-deficient groups. In rats fed am HFD with a control amino acid composition (HFCN), dramatic increase in triglyceride (TG) accumulation in the liver and serum LDL cholesterol concentration were observed compared with the CN group. However, when the arginine content in the diet was reduced, liver TG accumulation was completely inhibited, with no apparent effects on serum lipoprotein-cholesterol concentrations. Meanwhile, deficiency of the other amino acids, such as threonine, reversed HFD-induced upregulation of serum LDL cholesterol. Conclusions: It is observed that although the rats ingested an excessive amount of fat, neither ectopic fat accumulation nor dyslipidemia were always induced at least in the short term; hence, the consequent metabolic change was dependent on the dietary amino acid composition. These findings introduce an important perspective regarding HFD regimens in both scientific and clinical contexts.

SELECTION OF CITATIONS
SEARCH DETAIL