Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sci Adv ; 10(36): eadp0174, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39231224

ABSTRACT

Computing in memory (CIM) breaks the conventional von Neumann bottleneck through in situ processing. Monolithic integration of digital and analog CIM hardware, ensuring both high precision and energy efficiency, provides a sustainable paradigm for increasingly sophisticated artificial intelligence (AI) applications but remains challenging. Here, we propose a complementary metal-oxide semiconductor-compatible ferroelectric hybrid CIM platform that consists of Boolean logic and triggers for digital processing and multistage cell arrays for analog computation. The basic ferroelectric-gated units are assembled with solution-processable two-dimensional (2D) molybdenum disulfide atomic-thin channels at a wafer-scale yield of 96.36%, delivering high on/off ratios (>107), high endurance (>1012), long retention time (>10 years), and ultralow cycle-to-cycle/device-to-device variations (~0.3%/~0.5%). Last, we customize a highly compact 2D hybrid CIM system for dynamic tracking, achieving a high accuracy of 99.8% and a 263-fold improvement in power efficiency compared to graphics processing units. These results demonstrate the potential of 2D fully ferroelectric-gated hybrid hardware for developing versatile CIM blocks for AI tasks.

2.
Adv Sci (Weinh) ; 10(34): e2303734, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37814361

ABSTRACT

Two-dimensional material-based field-effect transistors (2DM-FETs) are playing a revolutionary role in electronic devices. However, before electronic design automation (EDA) for 2DM-FETs can be achieved, it remains necessary to determine how to incorporate contact transports into model. Reported methods compromise between physical intelligibility and model compactness due to the heterojunction nature. To address this, quasi-Fermi-level phase space theory (QFLPS) is generalized to incorporate contact transports using the Landauer formula. It turns out that the Landauer-QFLPS model effectively overcomes the issue of concern. The proposed new formula can describe 2DM-FETs with Schottky or Ohmic contacts with superior accuracy and efficiency over previous methods, especially when describing non-monotonic drain conductance characteristics. A three-bit threshold inverter quantizer (TIQ) circuit is fabricated using ambipolar black phosphorus and it is demonstrated that the model accurately predicts circuit performance. The model could be very effective and valuable in the development of 2DM-FET-based integrated circuits.

SELECTION OF CITATIONS
SEARCH DETAIL