Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Cereb Cortex ; 33(3): 881-894, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35254408

ABSTRACT

The approximate number system (ANS) is vital for survival and reproduction in animals and is crucial for constructing abstract mathematical abilities in humans. Most previous neuroimaging studies focused on identifying discrete brain regions responsible for the ANS and characterizing their functions in numerosity perception. However, a neuromarker to characterize an individual's ANS acuity is lacking, especially one based on whole-brain functional connectivity (FC). Here, based on the resting-state functional magnetic resonance imaging (rs-fMRI) data obtained from a large sample, we identified a distributed brain network (i.e. a numerosity network) using a connectome-based predictive modeling (CPM) analysis. The summed FC strength within the numerosity network reliably predicted individual differences in ANS acuity regarding behavior, as measured using a nonsymbolic number-comparison task. Furthermore, in an independent dataset of the Human Connectome Project (HCP), we found that the summed FC strength within the numerosity network also specifically predicted individual differences in arithmetic skills, but not domain-general cognitive abilities. Therefore, our findings revealed that the identified numerosity network could serve as an applicable neuroimaging-based biomarker of nonverbal number acuity and arithmetic skills.


Subject(s)
Connectome , Animals , Humans , Connectome/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Cognition , Neuroimaging
2.
Sci Adv ; 8(12): eabj4383, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35319988

ABSTRACT

Recent studies found that the deep convolutional neural networks (DCNNs) trained to recognize facial identities spontaneously learned features that support facial expression recognition, and vice versa. Here, we showed that the self-emerged expression-selective units in a VGG-Face trained for facial identification were tuned to distinct basic expressions and, importantly, exhibited hallmarks of human expression recognition (i.e., facial expression confusion and categorical perception). We then investigated whether the emergence of expression-selective units is attributed to either face-specific experience or domain-general processing by conducting the same analysis on a VGG-16 trained for object classification and an untrained VGG-Face without any visual experience, both having the identical architecture with the pretrained VGG-Face. Although similar expression-selective units were found in both DCNNs, they did not exhibit reliable human-like characteristics of facial expression perception. Together, these findings revealed the necessity of domain-specific visual experience of face identity for the development of facial expression perception, highlighting the contribution of nurture to form human-like facial expression perception.

3.
Sci Data ; 6(1): 295, 2019 11 29.
Article in English | MEDLINE | ID: mdl-31784528

ABSTRACT

The data presented here are related to the studyforrest project that uses the movie 'Forrest Gump' to map brain functions in a real-life context using functional magnetic resonance imaging (fMRI). However, neural-related fMRI signals are often small and confounded by various noise sources (i.e., artifacts) that makes searching for the signals induced by specific cognitive processes significantly challenging. To make neural-related signals stand out from the noise, the audio-visual movie watching fMRI dataset from the project was denoised by a combination of spatial independent component analysis and manual identification of signals or noise. Here, both the denoised data and the labeled decomposed components are shared to facilitate further study. Compared with the original data, the denoised data showed a substantial improvement in the temporal signal-to-noise ratio and provided a higher sensitivity in subsequent analyses such as in an inter-subject correlation analysis.


Subject(s)
Brain Mapping/methods , Magnetic Resonance Imaging/methods , Motion Pictures , Artifacts , Humans , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL