ABSTRACT
Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.
Subject(s)
Biomarkers, Tumor , Intercellular Adhesion Molecule-1 , Neoplasms , Humans , Intercellular Adhesion Molecule-1/metabolism , Intercellular Adhesion Molecule-1/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/metabolism , Mutation , Gene Expression Regulation, Neoplastic , Microsatellite Instability , Tumor Microenvironment/immunologyABSTRACT
Peritoneal dissemination threatens the survival of patients with gastric cancer (GC). Bufalin is an extract of traditional Chinese medicine, which has been proved to have anticancer effect. The target of bufalin in suppressing gastric cancer peritoneal dissemination (GCPD) and the underlying mechanism are still unclear. In this research, GC cell line MGC-803 and high-potential peritoneal dissemination cell line MKN-45P were treated with bufalin or L-NAME. Malignant biological behavior and protein level of GC cell lines were detected with MTT, wound healing, transwell, adhesion, and western blotting. Bioinformatics analysis and patient tissues were used to verify the role of endothelial nitric oxide synthase (NOS3) in GC. Mice model was used to assess the effect of bufalin and role of NOS3 in vivo. We found that bufalin inhibited the proliferation, invasion, and migration in GC cell lines. NOS3, which was an independent prognostic factor of GC patients, was predicted to be a potential target of bufalin. Further experiments proved that bufalin reduced the phosphorylation of NOS3, thereby inhibiting the mitogen-activated protein kinase (MAPK) signaling pathway, and ultimately suppressed GCPD by inhibiting EMT process. In conclusion, NOS3 was a potential therapeutic target and prognostic biomarker of GC. Bufalin could suppress GCPD through NOS3-MAPK signaling pathway, which provided more evidence support for intraperitoneal perfusion of bufalin to treat GCPD.
Subject(s)
Biomarkers, Tumor/metabolism , Bufanolides/pharmacology , Gene Expression Regulation, Neoplastic , Mitogen-Activated Protein Kinases/metabolism , Nitric Oxide Synthase Type III/metabolism , Peritoneal Neoplasms/drug therapy , Stomach Neoplasms/drug therapy , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinases/genetics , Nitric Oxide Synthase Type III/genetics , Peritoneal Neoplasms/genetics , Peritoneal Neoplasms/metabolism , Peritoneal Neoplasms/secondary , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor AssaysABSTRACT
The 5-year survival rate of diffuse large B-cell lymphoma (DLBCL) can reach 60%. However, nearly half of patients undergo relapse/refractory issues with a survival period of less than 2 years. New therapeutic approaches are therefore needed to improve chemotherapy efficacy and patient survival. Bufalin (BF), isolated from the traditional Chinese medicine Chansu, has been reported to play an anticancer role in multiple cancer cell types. However, there are few reports of the effects of BF on the growth of DLBCL. In the present study, we demonstrated that BF exerts antitumor activity in DLBCL cells, both in vitro and in vivo. Treatment of DLBCL cells with BF resulted in increased proliferation and apoptosis in a dose- and time-dependent manner. Daily intraperitoneal injection of 1.5 mg/kg BF significantly delayed DLBCL xenograft growth in NOD/SCID mice without affecting body weight. Bioinformatics analysis showed that BF may regulate NFATC1 protein and affect expression of its downstream gene, cMYC. Our results suggest that BF can attenuate NFATC1 translocation by reducing the intracellular calcium concentration; BF may also have a low synergistic effect with cyclosporin A. In conclusion, we demonstrated that BF exerts antitumor activity that is mediated at least in part by the Ca2+/NFATC1/cMYC pathway. Our findings suggest that BF can be effectively applied as a novel potential therapeutic agent for DLBCL.
Subject(s)
Antineoplastic Agents/pharmacology , Bufanolides/pharmacology , Calcium Signaling/drug effects , Lymphoma, Large B-Cell, Diffuse/drug therapy , Signal Transduction/drug effects , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Bufanolides/therapeutic use , Calcium Signaling/genetics , Carcinogenesis/drug effects , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Mice , NFATC Transcription Factors/genetics , NFATC Transcription Factors/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/genetics , Xenograft Model Antitumor AssaysABSTRACT
BACKGROUND: We investigated the prognostic significance of carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF) and their associations with clinicopathological features in patients with sigmoid colon carcinoma (SCC). METHODS: We retrospectively reviewed patients with SCC treated with curative surgery from January 2001 to June 2010 at our hospital. Patients' general, clinical, histopathologic, and serum biomarkers were analyzed. We measured VEGF in 176 sets of SCC tissues and adjacent noncancerous tissue samples with immunohistochemical and Elivison staining. CEA was measured with a tumor biomarker chip. Their correlations with clinicopathologic factors were analyzed by chi-square test. Univariate and multivariate analyses were used to identify factors associated with overall survival (OS). RESULTS: Of the 176 patients, 69.3% were alive and 30.7% had died. In univariate analysis, serum CEA level (p = 0.002, OR = 2.394, 1.392 - 4.116), tumor VEGF (p = 0.04, OR = 1.968, 1.032 - 3.752), lymph node metastasis (N, p = 0.000, OR = 3.712, 2.064 - 6.675), T stage (T, p = 0.016, OR = 5.706, 1.382 - 23.552) and differentiation (p = 0.000) were the prognostic factors for OS. In stratified analysis, combined elevated serum CEA and tumor VEGF levels were associated with poorer prognosis. CONCLUSIONS: Elevated preoperative serum CEA and tumor VEGF were predictors of poor prognosis for patients with SCC.
Subject(s)
Sigmoid Neoplasms , Biomarkers, Tumor , Carcinoembryonic Antigen , Colon, Sigmoid , Humans , Lymphatic Metastasis , Neoplasm Staging , Prognosis , Retrospective Studies , Vascular Endothelial Growth Factor AABSTRACT
As a dual-function protein, prosaposin (PSAP) is a lysosome-associated protein that participates in a variety of cellular processes. In the lysosome, PSAP is processed to activate enzymes that degrade lipids. In addition, PSAP proteins located extracellularly are involved in cancer progression, such as proliferation and tumor death suppression signaling. Moreover, under different situations, PSAP exhibits distinct metastasis potentials in tumors. However, comprehensive insight into PSAP in cancer progression has been lacking. Here, we provide a framework of the role of PSAP in cancer and its clinical application in cancer patients, providing a novel perspective on the clinical translation of PSAP.
ABSTRACT
Luteolin, a monomeric substance, is a natural product of the Brucea javanica (BJ) plant. Brucea javanica oil emulsion injection (BJOEI) is a proprietary Chinese medicine purified from BJ that is widely used clinically as an anti-tumor treatment. Although a growing body of research suggests that luteolin and BJOEI have anti-tumor effects, the molecular mechanism of action has not been fully elucidated. In this study, through molecular docking technology, we found that luteolin can interact directly with GPSM2 and regulate the FoxO signaling pathway through GPSM2. In addition, the inhibitory effect of luteolin on colon adenocarcinoma (COAD) cells was found to be offset by knockdown of GPSM2. In contrast, the anti-proliferative effects of luteolin could be notably reversed by overexpression of GPSM2. The results reveal that GPSM2 is crucial in luteolin-mediated anti-proliferative effects. The mediation of anti-proliferative effects by GPSM2 has also been indirectly demonstrated in RKO and SW480 xenograft mice models. In addition, we verified that BJOEI inhibits the progression of COAD by mediating GPSM2 and regulating the FoxO signaling pathway. We also found that BJOEI achieved a better anti-tumor effect when combined with fluorouracil injection. Collectively, our data show that the anti-tumor effects of BJOEI and luteolin on COAD are GPSM2-dependent and downregulating the expression of GPSM2 to regulate the FoxO signaling pathway may be an effective way to treat COAD.
Subject(s)
Adenocarcinoma , Cell Proliferation , Colonic Neoplasms , Fluorouracil , Luteolin , Mice, Nude , Luteolin/pharmacology , Humans , Animals , Colonic Neoplasms/drug therapy , Colonic Neoplasms/pathology , Colonic Neoplasms/metabolism , Fluorouracil/pharmacology , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Cell Proliferation/drug effects , Xenograft Model Antitumor Assays , Mice, Inbred BALB C , Signal Transduction/drug effects , Mice , Biological Products/pharmacology , Biological Products/isolation & purification , Biological Products/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Molecular Docking SimulationABSTRACT
BACKGROUND: Ovarian cancer (OC) is one of the most lethal gynecological malignancies. This study aimed to identify biomarkers that were sensitive to platinum-based chemotherapeutic agents and can be used in immunotherapy and explore the importance of their mechanisms of action. METHODS: RNA-seq profiles and clinicopathological data for OC samples were obtained from The Cancer Genome Atlas (TCGA) and cBioPortal platform, respectively. Platinum-sensitive and platinum-resistant OC samples in the TCGA cohort were selected based on the clinical information. RNA-seq data for 70 OC samples withSingle-sample gene set enrichment analysis (ssGSEA) and unsupervised clustering were used to classify OC patients from the TCGA cohort into clusters with different proportions of infiltrating immune cells. ESTIMATE analysis was used to assess the immune landscape among clusters. Differential expression, univariate Cox regression, and LASSO regression analyses were performed to construct prognostic model. Spearman correlation analysis was conducted to investigate the correlations among immune checkpoint inhibitors (ICIs) and risk score, half-maximal drug inhibitory concentration (IC50) and risk score. RESULTS: Using ssGSEA and unsupervised clustering, OC samples were divided into two clusters with different immune cell infiltration. Then, 1715 differentially expressed immune-related genes (DEIRGs) were identified between two clusters, 984 differentially expressed platinum-sensitive related genes (DEPSRGs) between 149 platinum-sensitive and 63 platinum-resistant OC samples were identified, and 5384 differentially expressed genes (DEGs) between 380 OC and 194 normal samples were detected from the TCGA cohort. Six biomarkers (GMPPB, SRPK1, STC1, PRSS16, HPDL, and SPTSSB) were detected to establish a prognostic model. The OC patients in the TCGA cohort were classified into high- and low-risk groups. The receive operating characteristic (ROC) curve was plotted and demonstrated that the prognostic model performed well with the area under ROC curve (AUC) greater than 0.6. The expressions of 5 ICIs, including CD200, TNFRSF18, CD160, CD200R1, and CD274 (PD-L1), were significantly different between two risk groups, and the risk score was significant negative associated with CTLA4, TNFRSF4, TNFRSF18, and CD274. Moreover, there were significant differences in IC50 of 10 chemo drugs between two risk groups, patients in the high-risk group could be more resistant to po0tinib, dasatinib, and neratinib. CONCLUSION: In summary, this study constructed a novel prognostic model based on six prognostic biomarkers, including GMPPB, SRPK1, STC1, PRSS16, HPDL, and SPTSSB, which can be utilized for predicting the prognosis of OC patients. These biomarkers were the potential therapeutic targets.
ABSTRACT
Introduction: The aim was to observe the effect of Toll-like receptor 4 (TLR4) deficiency on clinical severity and expression of Th1/Th2/Th17-associated cytokines in experimental autoimmune neuritis (EAN). Material and methods: We selected C57BL/10 wild type (WT) mice and TLR4 knockout (KO) mice with the C57BL/10 background for induction of the EAN model by immunizing mice twice (days 0 and 8) via subcutaneous injection of 180 µg P0 peptide 180-199 emulsion in 25 µl of PBS and 0.5 mg Mycobacterium tuberculosis (Difco, USA) in 25 µl of Freund's incomplete adjuvant into the back of mice. The concentrations of serum cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ and TNF) were determined using the Ms Th1/Th2/Th17 CBA kit. Results: We found that TLR4 deficiency could attenuate the clinical severity and delay the onset of EAN. Moreover, our data showed that the sera levels of IFN-γ, TNF, IL-6 and IL-17A were elevated in the WT mice with EAN when compared with the naive WT mice, but only the production of IL-17A was significantly lower in the TLR4 KO mice with EAN than in their WT counterparts. Conclusions: Based on these findings, TLR4 may contribute to the pathogenesis of EAN by regulating Th17 cells and the production of Th17-associated factors. However, the exact mechanism remains unclear and more evidence is needed to elucidate its role in EAN.
ABSTRACT
Prosaposin (PSAP) plays a critical role in sphingolipid and cancer metabolism. Reports have shown that PSAP was involved in proliferation, tumorigenesis, and metastasis. However, the expression pattern of PSAP and its prognostic roles in gastric cancer remain elusive. PSAP expression pattern and its prognostic roles in gastric cancer (GC) were explored using data from the TCGA and Kaplan-Meier Plotter. Immunohistochemical staining of GC tissues was performed to validate the prognostic role of PSAP. TISIDB was used to analyze its correlation with immunomodulators. PSAP-associated genes, PDCD1, TGFB1, and CSF1R were used to build a risk model to evaluate immunotherapy outcomes of patients with stomach adenocarcinoma (STAD). Results showed that PSAP was highly expressed in GC. High PSAP expression in GC patients also significantly indicated a poor prognosis. The results of immunohistochemical staining showed that PSAP was an independent prognostic factor in GC patients. Based on three PSAP-associated genes, a risk model that could predict the prognosis and immunotherapy outcome of STAD was bulit. PSAP was an independent prognostic factor in GC. Our results have identified three prognosis-related genes which were useful to evaluate immunotherapy outcomes of STAD patients.
ABSTRACT
Epithelial ovarian cancer (EOC) has a poor prognosis and high mortality rate; patients are easy to relapse with standard therapies. So, there is an urgent need to develop novel drugs. In this study, differentially expressed genes (DEGs) of EOC were identified in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Enrichment and protein-protein interaction (PPI) analyses were performed. The drug candidate which has the possibility to treat EOC was predicted by Connectivity Map (CMAP) databases. Moreover, molecular docking was selected to calculate the binding affinity between drug candidate and hub genes. The cytotoxicity of drug candidates was assessed by MTT and colony formation analysis, the proteins coded by hub genes were detected by Western blots, and apoptosis analysis was evaluated by flow cytometry. Finally, 296 overlapping DEGs (|log 2 fold change|>1; q-value <0.05), which were principally involved in the cell cycle (p < 0.05), and cyclin-dependent kinase 1 (CDK1) were screened as the significant hub gene from the PPI network. Furthermore, the 21 drugs were extracted from CMAPs; among them, piperlongumine (PL) showed a lower CMAP score (-0.80, -62.92) and was regarded as the drug candidate. Furthermore, molecular docking results between PL and CDK1 with a docking score of -8.121 kcal/mol were close to the known CDK1 inhibitor (-8.24 kcal/mol). Additionally, in vitro experiments showed that PL inhibited proliferation and induced apoptosis via targeting CDK1 in EOC SKOV3 cells. Our results reveal that PL may be a novel drug candidate for EOC by inhibiting cell cycle.
ABSTRACT
Background: NOS3 (endothelial NOS, eNOS) is a member of the nitric oxide synthase (NOS) enzyme family, mainly participating in nitric oxide (NO) generation. NOS3 has been reported to inhibit apoptosis and promote angiogenesis, proliferation, and invasiveness. However, the expression pattern of NOS3 and its diagnostic and prognostic potential has not been investigated in a pan-cancer perspective. Methods: Data from the Genotype-Tissue Expression (GTEx), the Cancer Genome Atlas (TCGA), the Cancer Cell Line Encyclopedia (CCLE), and the Cancer Therapeutics Response Portal (CTRP) were employed and NOS3 expression was comprehensively analyzed in normal tissues, cancer tissues, and cell lines. Immunohistochemical staining of tissue sections were used to validate the prognostic role of NOS3 in gastric cancer patients. GSVA and GSEA analyses were performed to investigate signaling pathways related to NOS3 expression. Results: In normal tissues, NOS3 was expressed highest in the spleen and lowest in the blood. NOS3 expression was increased in stomach adenocarcinoma (STAD) and significantly associated with poor prognosis of patients. Immunohistochemical staining validated that NOS3 was an independent prognostic factor of gastric cancer. Several canonical cancer-related pathways were found to be correlated with NOS3 expression in STAD. The expression of NOS3 was related to the response to QS-11 and brivinib in STAD. Conclusions: NOS3 was an independent prognostic factor for patients with STAD. Increased expression of NOS3 influenced occurrence and development of STAD through several canonical cancer-related pathways. Drug response analysis reported drugs to suppress NOS3. NOS3 might be a novel target for gastric cancer treatment.
ABSTRACT
Synaptotagmin 7 (SYT7) can encode a single-pass 46-kDa transmembrane protein which located on human chromosome 11q12.2. It has been reported to be dysregulated in several cancers; however, there are few reports on the role of SYT7 in non-small cell lung carcinoma (NSCLC). The purpose of our study was to investigate the expression of SYT7 in NSCLC and its relationship with the prognosis of NSCLC. Differences in SYT7 expression were explored by using a public database and tissue samples. The prognostic value of SYT7 and its expression correlation with clinical parameters were evaluated by statistical analysis. Our current study found that elevated mRNA and protein levels of SYT7 in NSCLC tissues compared to adjacent normal tissues. The high expression of SYT7 in NSCLC patients was positively correlated with tumour differentiation (P = 0.031) and pT (P = 0.041). The higher SYT7 expression had a shorter survival time than those with lower SYT7 expression in NSCLC patients. Furthermore, multivariate analysis demonstrated that the expression of SYT7 was an unfavourable independent prognostic factor for NSCLC (P = 0.044). In conclusion, SYT7 was upregulated in NSCLC tissues and maybe a prognostic and diagnostic factor of NSCLC.
Subject(s)
Carcinoma, Non-Small-Cell Lung/metabolism , Gene Expression Regulation, Neoplastic/genetics , Lung Neoplasms/metabolism , Synaptotagmins/metabolism , Adult , Aged , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Disease Progression , Female , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , Male , Middle Aged , Prognosis , Synaptotagmins/geneticsABSTRACT
BACKGROUND: The differential diagnosis between postneurosurgical bacterial meningitis and aseptic meningitis remains challenging both for the clinician and the laboratory. Combinations of markers, as opposed to single ones, may improve diagnosis and thereby survival. METHODS: This prospective cohort study included patients with suspected bacterial meningitis after neurosurgery. The patients were divided into two groups according to the diagnostic criteria of meningitis involving a postneurosurgical bacterial meningitis group and a postneurosurgical aseptic meningitis group. Four biomarkers, including cerebrospinal fluid procalcitonin, lactate, interleukin-8 and interleukin-10 were assayed separately, and three algorithms were constructed using a linear combination. The area under the receiver operating characteristic curve was used to compare their performances. RESULTS: A cohort of 112 patients was enrolled in our study. Forty-three patients were diagnosed with postneurosurgical bacterial meningitis, and the cerebrospinal fluid values of their biomarkers were higher in patients with postneurosurgical bacterial meningitis than with postneurosurgical aseptic meningitis. The area under the receiver operating characteristic curves for the detection of postneurosurgical bacterial meningitis were 0.803 (95% confidence interval [CI], 0.724-0.883) for procalcitonin; 0.936 (95% CI, 0.895-0.977) for lactate; 0.771 (95% CI, 0.683-0.860) for interleukin-8; 0.860 (95% CI, 0.797-0.929) for interleukin-10; 0.937 (95% CI, 0.897-0.977) for the composite two-marker test; 0.945 (95% CI, 0.908-0.982) for the composite three-marker test and 0.954 (95% CI, 0.922-0.989) for the composite of all tests. The area under the receiver operating characteristic curves of the combination tests were greater than those of the single markers. CONCLUSIONS: Combining information from several markers improved the diagnostic accuracy in detecting postneurosurgical bacterial meningitis.
Subject(s)
Biomarkers/cerebrospinal fluid , Meningitis, Bacterial/diagnosis , Neurosurgical Procedures/adverse effects , Postoperative Complications/diagnosis , Adult , China , Cohort Studies , Diagnosis, Differential , Female , Humans , Interleukin-10/cerebrospinal fluid , Interleukin-8/cerebrospinal fluid , Lactic Acid/cerebrospinal fluid , Male , Meningitis, Aseptic/cerebrospinal fluid , Meningitis, Aseptic/diagnosis , Meningitis, Bacterial/cerebrospinal fluid , Middle Aged , Postoperative Complications/cerebrospinal fluid , Procalcitonin/cerebrospinal fluid , Prospective StudiesABSTRACT
INTRODUCTION: Numerous types of infection were closely related to GBS, mainly including Campylobacter jejuni, Cytomegalovirus, which may lead to the production of anti-gangliosides antibodies (AGA). Currently, although there are increased studies on the AGA and a few studies of anti-CMV antibodies in GBS, the association between them remains poorly documented. Therefore, our research aims to analyze the correlation of anti-CMV antibodies and AGA in GBS. METHODS: A total of 29 patients with GBS were enrolled in this study. The CMV antibodies were tested by the electrochemiluminescence immunoassay "ECLIA" (Roche Diagnostics GmbH). The serum gangliosides were determined by The EUROLINE test kit. RESULTS: Of the 29 patients with GBS, 9 (31%) were AGA-seropositive, in which 22 were CMV-IgG positive in CSF at the same time, but all 29 samples were CMV-IgM negative in both serum and CSF. In the AGA-positive group, the rate of both serum and CSF positive was 87.5% (7/8), higher than 50% (7/14) of the negative group, although no statistical significance was found. In addition, we found that there was a trend of higher ratio of men, a younger age onset, less frequent preceding infection, a higher level of CSF proteins, and less frequent cranial nerve deficits, although the data did not reach a statistical significance. CONCLUSION: In spite of no statistical significance association was found between serum AGA and CMV-IgG in serum and CSF. However, we found that there was a trend of high positive rate of both serum and CSF-CMV-IgG in AGA-positive than the negative group. So we should further expand the sample size to analyze the association between AGA and CMV or other neurotropic virus antibodies in various diseases, to observe whether they could be serological marker of these diseases (especially GBS) or the underlying pathogenesis.