Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
J Immunol ; 212(7): 1113-1128, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38363204

ABSTRACT

As an immune checkpoint, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) suppresses the activation, proliferation, and effector function of T cells, thus preventing an overexuberant response and maintaining immune homeostasis. However, whether and how this immune checkpoint functions in early vertebrates remains unknown. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell response by CTLA-4 in bony fish. Tilapia CTLA-4 is constitutively expressed in lymphoid tissues, and its mRNA and protein expression in lymphocytes are upregulated following PHA stimulation or Edwardsiella piscicida infection. Blockade of CTLA-4 signaling enhanced T cell activation and proliferation but inhibited activation-induced T cell apoptosis, indicating that CTLA-4 negatively regulated T cell activation. In addition, blocking CTLA-4 signaling in vivo increased the differentiation potential and cytotoxicity of T cells, resulting in an enhanced T cell response during E. piscicida infection. Tilapia CTLA-4 competitively bound the B7.2/CD86 molecule with CD28, thus antagonizing the CD28-mediated costimulatory signal of T cell activation. Furthermore, inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, c-Myc, or glycolysis markedly impaired the CTLA-4 blockade-enhanced T cell response, suggesting that CTLA-4 suppressed the T cell response of tilapia by inhibiting mTORC1/c-Myc axis-controlled glycolysis. Overall, the findings indicate a detailed mechanism by which CTLA-4 suppresses T cell immunity in tilapia; therefore, we propose that early vertebrates have evolved sophisticated mechanisms coupling immune checkpoints and metabolic reprogramming to avoid an overexuberant T cell response.


Subject(s)
Cichlids , T-Lymphocytes , Animals , CTLA-4 Antigen , CD28 Antigens , Mechanistic Target of Rapamycin Complex 1/metabolism , Lymphocyte Activation , Glycolysis , Mammals
2.
J Immunol ; 212(12): 1877-1890, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38700398

ABSTRACT

Despite the advances in study on osmotic physiology in bony fish, the mechanism by which the immune system, especially T-cell immunity, adapts and responds to osmotic stress remains unknown. In the current study, we investigated the response of T cells to hyperosmotic stress in the bony fish Nile tilapia (Oreochromis niloticus). As a euryhaline fish, tilapia was able to adapt to a wide range of salinities; however, hypertonic stress caused inflammation and excessive T-cell activation. Furthermore, hypertonic stress increased the expression of IL-17A in T cells, upregulated the transcription factor RORα, and activated STAT3 signaling, along with IL-6- and TGF-ß1-mediated pathways, revealing an enhanced Th17 response in this early vertebrate. These hypertonic stress-induced events collectively resulted in an impaired antibacterial immune response in tilapia. Hypertonic stress elevated the intracellular ROS level, which in turn activated the p38-MK2 signaling pathway to promote IL-17A production by T cells. Both ROS elimination and the p38-MK2 axis blockade diminished the increased IL-17A production in T cells under hypertonic conditions. Moreover, the produced proinflammatory cytokines further amplified the hypertonic stress signaling via the MKK6-p38-MK2 axis-mediated positive feedback loop. To our knowledge, these findings represent the first description of the mechanism by which T-cell immunity responds to hypertonic stress in early vertebrates, thus providing a novel perspective for understanding the adaptive evolution of T cells under environmental stress.


Subject(s)
Inflammation , Osmotic Pressure , Th17 Cells , Tilapia , Animals , Th17 Cells/immunology , Inflammation/immunology , Tilapia/immunology , Signal Transduction/immunology , Lymphocyte Activation/immunology , Interleukin-17/metabolism , Interleukin-17/immunology
3.
J Immunol ; 210(3): 229-244, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36548476

ABSTRACT

The braking mechanisms to protect the host from tissue damage and inflammatory disease caused by an overexuberant immune response are common in many T cell subsets. However, the negative regulation of T cell responses and detailed mechanisms are not well understood in early vertebrates. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell immunity by IL-10. Tilapia encodes an evolutionarily conserved IL-10, whose expression in lymphocytes is markedly induced during the primary adaptive immune response against Aeromonas hydrophila infection. Activated T cells of tilapia produce IL-10, which in turn inhibits proinflammatory cytokine expression and suppresses PHA-induced T cell activation. Moreover, administration of IL-10 impairs the proliferation of tilapia T cells, reduces their potential to differentiate into Th subsets, and cripples the cytotoxic function, rendering the animals more vulnerable to pathogen attack. After binding to its receptor IL-10Ra, IL-10 activates the JAK1/STAT3 axis by phosphorylation and enhances the expression of the suppressor of cytokine signaling 3 (SOCS3), which in turn attenuates the activation of the NF-κB and MAPK/ERK signaling pathways, thus suppressing the T cell response of tilapia. Our findings elucidate a negative regulatory mechanism of T cell immunity in a fish species and support the notion that the braking mechanism of T cells executed through IL-10 existed prior to the divergence of the tetrapod lineage from teleosts. Therefore, this study, to our knowledge, provides a novel perspective on the evolution of the adaptive immune system.


Subject(s)
Cichlids , Fish Diseases , Tilapia , Animals , NF-kappa B/metabolism , Tilapia/metabolism , Interleukin-10/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Fish Proteins/metabolism
4.
J Biol Chem ; 299(2): 102843, 2023 02.
Article in English | MEDLINE | ID: mdl-36581209

ABSTRACT

Transforming growth factor-ß1 (TGF-ß1) can suppress the activation, proliferation, and function of many T-cell subsets, protecting organisms from inflammatory and autoimmune disease caused by an overexuberant immune response. However, whether and how TGF-ß1 regulates T-cell immunity in early vertebrates remain unknown. Here, using a Nile tilapia (Oreochromis niloticus) model, we investigated suppression of the T-cell response by TGF-ß1 in teleost species. Tilapia encodes an evolutionarily conserved TGF-ß1, the expression of which in lymphocytes is significantly induced during the immune response following Edwardsiella piscicida infection. Once activated, tilapia T cells increase TGF-ß1 production, which in turn suppresses proinflammatory cytokine expression and inhibits T-cell activation. Notably, we found administration of TGF-ß1 cripples the proliferation of tilapia T cells, reduces the potential capacity of Th1/2 differentiation, and impairs the cytotoxic function, rendering the fish more vulnerable to bacterial infection. Mechanistically, TGF-ß1 initiates the TGF-ßR/Smad signaling pathway and triggers the phosphorylation and nuclear translocation of Smad2/3. Smad3 subsequently interacts with several transcriptional partners to repress transcription of cytokines IL-2 and IFN-γ but promote transcription of immune checkpoint regulator CTLA4 and transcription factor Foxp3. Furthermore, TGF-ß1/Smad signaling further utilizes Foxp3 to achieve the cascade regulation of these T-cell genes. Taken together, our findings reveal a detailed mechanism by which TGF-ß1 suppresses the T cell-based immunity in Nile tilapia and support the notion that TGF-ß1 had already been employed to inhibit the T-cell response early in vertebrate evolution, thus providing novel insights into the evolution of the adaptive immune system.


Subject(s)
Cichlids , Forkhead Transcription Factors , Smad3 Protein , T-Lymphocytes , Transforming Growth Factor beta1 , Animals , Cichlids/immunology , Gene Expression Regulation , Gene Regulatory Networks , Signal Transduction , Smad3 Protein/genetics , Smad3 Protein/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , T-Lymphocytes/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism
5.
PLoS Pathog ; 18(10): e1010913, 2022 10.
Article in English | MEDLINE | ID: mdl-36282845

ABSTRACT

Utilization of specialized Th1 cells to resist intracellular pathogenic infection represents an important innovation of adaptive immunity. Although transcriptional evidence indicates the potential presence of Th1-like cells in some fish species, the existence of CD3+CD4+IFN-γ+ T cells, their detailed functions, and the mechanism determining their differentiation in these early vertebrates remain unclear. In the present study, we identified a population of CD3+CD4-1+IFN-γ+ (Th1) cells in Nile tilapia upon T-cell activation in vitro or Edwardsiella piscicida infection in vivo. By depleting CD4-1+ T cells or blocking IFN-γ, Th1 cells and their produced IFN-γ were found to be essential for tilapia to activate macrophages and resist the E. piscicida infection. Mechanistically, activated T cells of tilapia produce IL-2, which enhances the STAT5 and mTORC1 signaling that in turn trigger the STAT1/T-bet axis-controlled IFN-γ transcription and Th1 cell development. Additionally, mTORC1 regulates the differentiation of these cells by promoting the proliferation of CD3+CD4-1+ T cells. Moreover, IFN-γ binds to its receptors IFNγR1 and IFNγR2 and further initiates a STAT1/T-bet axis-mediated positive feedback loop to stabilize the Th1 cell polarization in tilapia. These findings demonstrate that, prior to the emergence of tetrapods, the bony fish Nile tilapia had already evolved Th1 cells to fight intracellular bacterial infection, and support the notion that IL-2-mTORC1 signaling coordinates the STAT1/T-bet axis to determine Th1 cell fate, which is an ancient mechanism that has been programmed early during vertebrate evolution. Our study is expected to provide novel perspectives into the evolution of adaptive immunity.


Subject(s)
Antimutagenic Agents , Th1 Cells , Animals , STAT5 Transcription Factor/metabolism , Antimutagenic Agents/metabolism , Interleukin-2/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Interleukin-12/metabolism , Trans-Activators/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Cell Differentiation , Lymphocyte Activation , Androgen Antagonists/metabolism , CD4-Positive T-Lymphocytes
6.
Wound Repair Regen ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551210

ABSTRACT

Flaps are mainly used to repair wounds in the clinical setting but can sometimes experience ischaemic necrosis postoperatively. This study investigated whether donepezil, an acetylcholinesterase inhibitor, can enhance the survival rate of flaps. We randomly allocated 36 rats into control, low-dose (3 mg/kg/day), and high-dose (5 mg/kg/day) groups. On Postoperative day 7, we assessed flap viability and calculated the mean area of viable flap. After euthanizing the rats, we employed immunological and molecular biology techniques to examine the changes in flap tissue vascularization, apoptosis, autophagy, and inflammation. Donepezil enhanced the expression of hypoxia-inducible factor and vascular endothelial growth factor to facilitate angiogenesis. In addition, it elevated the expression of LC3B, p62, and beclin to stimulate autophagy. Furthermore, it increased the expression of Bcl-2 while reducing the expression of Bax, thus inhibiting apoptosis. Finally, it had anti-inflammatory effects by reducing the levels of IL-1ß, IL-6, and TNF-α. The results suggest that donepezil can enhance the viability of randomly generated skin flaps by upregulating HIF-1α/VEGF signalling pathway, facilitating vascularization, inducing autophagy, suppressing cell apoptosis, and mitigating inflammation within the flap tissue.

7.
Fish Shellfish Immunol ; 148: 109515, 2024 May.
Article in English | MEDLINE | ID: mdl-38499218

ABSTRACT

As a multipotent cytokine, interleukin (IL)-2 plays important roles in activation, differentiation and survival of the lymphocytes. Although biological characteristics and function of IL-2 have been clarified in several teleost species, evidence regarding IL-2 production at the cellular and protein levels is still scarce in fish due to the lack of reliable antibody. In this study, we developed a mouse anti-Nile tilapia IL-2 monoclonal antibody (mAb), which could specifically recognize IL-2 protein and identify IL-2-producing lymphocytes of tilapia. Using this mAb, we found that CD3+ T cells, but not CD3- lymphocytes, are the main cellular source of IL-2 in tilapia. Under resting condition, both CD3+CD4-1+ T cells and CD3+CD4-1- T cells of tilapia produce IL-2. Moreover, the IL-2 protein level and the frequency of IL-2+ T cells significantly increased once T cells were activated by phytohemagglutinin (PHA) or CD3 plus CD28 mAbs in vitro. In addition, Edwardsiella piscicida infection also induces the IL-2 production and the expansion of IL-2+ T cells in the spleen lymphocytes. These findings demonstrate that IL-2 takes part in the T-cell activation and anti-bacterial adaptive immune response of tilapia, and can serve as an important marker for T-cell activation of teleost fish. Our study has enriched the knowledge regarding T-cell response in fish species, and also provide novel perspective for understanding the evolution of adaptive immune system.


Subject(s)
CD28 Antigens , Interleukin-2 , Animals , Antibodies, Monoclonal , CD3 Complex , Interleukin-2/genetics , Lymphocyte Activation , T-Lymphocytes , Tilapia
8.
Cell Mol Life Sci ; 80(8): 219, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37470873

ABSTRACT

Recent advances highlight a key role of transient fasting in optimizing immunity of human and mouse. However, it remains unknown whether this strategy is independently acquired by mammals during evolution or instead represents gradually evolved functions common to vertebrates. Using a tilapia model, we report that T cells are the main executors of the response of the immune system to fasting and that dietary restriction bidirectionally modulates T cell immunity. Long-term fasting impaired T cell immunity by inducing intense autophagy, apoptosis, and aberrant inflammation. However, transient dietary restriction triggered moderate autophagy to optimize T cell response by maintaining homeostasis, alleviating inflammation and tissue damage, as well as enhancing T cell activation, proliferation and function. Furthermore, AMPK is the central hub linking fasting and autophagy-controlled T cell immunity in tilapia. Our findings demonstrate that dietary restriction to optimize immunity is an ancient strategy conserved in vertebrate evolution, providing novel perspectives for understanding the adaptive evolution of T cell response.


Subject(s)
T-Lymphocytes , Tilapia , Animals , Humans , Mice , Vertebrates/genetics , Lymphocyte Activation , Autophagy/genetics , Inflammation , Adaptive Immunity , Mammals
9.
Phytother Res ; 38(2): 527-538, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37909161

ABSTRACT

Flaps are mainly used for wound repair. However, postoperative ischemic necrosis of the distal flap is a major problem, which needs to be addressed urgently. We evaluated whether tetrandrine, a compound found in traditional Chinese medicine, can prolong the survival rate of random skin flaps. Thirty-six rats were randomly divided into control, low-dose tetrandrine (25 mg/kg/day), and high-dose tetrandrine (60 mg/kg/day) groups. On postoperative Day 7, the flap survival and average survival area were determined. After the rats were sacrificed, the levels of angiogenesis, apoptosis, and inflammation in the flap tissue were detected with immunology and molecular biology analyses. Tetrandrine increased vascular endothelial growth factor and Bcl-2 expression, in turn promoting angiogenesis and anti-apoptotic processes, respectively. Additionally, tetrandrine decreased the expression of Bax, which is associated with the induction of apoptosis, and also decreased inflammation in the flap tissue. Tetrandrine improved the survival rate of random flaps by promoting angiogenesis, inhibiting apoptosis, and reducing inflammation in the flap tissue through the modulation of the PI3K/AKT signaling pathway.


Subject(s)
Benzylisoquinolines , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats , Animals , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A , Signal Transduction , Inflammation , Skin
10.
Langmuir ; 39(35): 12365-12383, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37611147

ABSTRACT

It is crucial to comprehend how the oil film varies under dynamic operating conditions and the accompanying friction properties to better grasp the friction mechanism and control friction behavior. To model the friction characteristics under boundary lubrication (BL) and elastohydrodynamic lubrication (EHL), nonequilibrium molecular dynamics simulations with various numbers of hexadecane molecules as lubricating oil were conducted in this research under the conditions of dynamic speed and dynamic load. All the dynamic operating conditions have the form of sine waves, with various frequencies and amplitudes. According to the findings, the friction force is strongly connected with interfaces where relative sliding takes place, whose number, velocity difference, and the degree of solidification have significant influences. The variation of amplitude under dynamic load can cause a regular change in the density of the lubricating layer, while the variation of frequency can cause a change in molecular layer's range of motion. Both effects are crucial for friction. The structure of the lubricating layer with lower friction varies with various frequencies for dynamic velocity. Both high and small amplitudes of velocity offer advantages to form a stable film structure at low frequencies in the BL and EHL regions, while the amplitude in the BL area has minimal association with friction at high frequencies. At high frequencies in the EHL region, the friction rises as the amplitude of velocity grows and the lubricating layer becomes more unstable.

11.
Fish Shellfish Immunol ; 140: 108974, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37482205

ABSTRACT

As a pleiotropic cytokine consisting of IL-12p35 and IL-12p40, Interleukin-12 (IL-12) features in inflammation regulation and anti-bacterial immunity. While IL-12 homologs have been identified in non-mammalian species, the precise mechanisms by which IL-12 contributes to early adaptive immune responses in vertebrates remain incompletely understood. Herein, an evolutionary conserved Oreochromis niloticus IL-12 (defined as OnIL-12) was identified by synteny characterization, structural comparisons and phylogenetic pattern of IL-12p35b and IL-12p40a. IL-12p35b and IL-12p40a exhibited widespread expression in lymphoid-related tissues of tilapia, while their mRNA expression in head-kidney demonstrated a significant increase after Edwardsiella piscicida infection. Compared with other lymphocytes, recombinant OnIL-12 (rOnIL-12) displayed stronger affinity binding to T cells. Although stimulation of lymphocytes with the p35b or p40a subunit resulted in a significant induction of IFN-γ expression, rOnIL-12 showed stronger potential to promote IFN-γ expression than these subunits. rOnIL-12 not only elevated the mRNA expression level Th1 cell-associated transcription factor T-bet in lymphocytes, but also increased the proportion of CD4-1+IFN-γ+ lymphocytes. Moreover, the mRNA and phosphorylation levels of STAT1, STAT3, STAT4 and STAT5 were enhanced by rOnIL-12. These findings will offer previous evidence for further exploration into the regulatory mechanisms of Th1 cellular immunity in early vertebrates.


Subject(s)
Cichlids , Interleukin-12 , Animals , Interleukin-12/genetics , Th1 Cells , Cichlids/genetics , Cichlids/metabolism , Phylogeny , Interferon-gamma/genetics , Interferon-gamma/metabolism , RNA, Messenger/metabolism
12.
FASEB J ; 35(4): e21457, 2021 04.
Article in English | MEDLINE | ID: mdl-33689192

ABSTRACT

As fish constitute the first evolutionary group with primordial T cells, they are of importance for understanding the origin and evolution of adaptive immunity. Yet, the knowledge about how ancestral T cells function remains limited. Therefore, the teleost model Nile tilapia (Oreochromis niloticus) was used in this study to investigate the regulatory mechanisms of T-cell immunity in fish. We identified an evolutionarily conserved canonical NF-κB signaling pathway in Nile tilapia, which participates in primary adaptive immune response during Streptococcus agalactiae infection. Blockade of NF-κB activity severely impairs T-cell activation and expansion, rendering the animals more vulnerable to pathogen attack. Meanwhile, NF-κB signaling is indispensable for fish T cells to produce IL-17A during the antibacterial immune response. Moreover, IL-17A binds its receptor IL-17RA, initiates the ACT1-TRAF6-TAK1 axis, and triggers NF-κB-dependent T-cell activation, thus forming a positive feedback loop of T-cell immunity in Nile tilapia. Furthermore, IL-17A seems to promote innate immunity by regulating pro-inflammatory cytokines via TRAF6-NF-κB axis, indicating the presence of an NF-κB-dependent IL-17A signaling pathway for coordinating adaptive and innate immunity in fish. Our results suggest that fish NF-κB couples TCR and IL-17 signals to modulate ancestral T-cell immunity against bacterial infection, and the regulation of T-cell immunity by NF-κB and IL-17 is a strategy that existed prior to the divergence of the tetrapod lineage from teleost fish. This study, therefore, provides a new perspective on the evolution of adaptive immunity.


Subject(s)
Bacterial Infections/immunology , Interleukin-17/metabolism , NF-kappa B/metabolism , T-Lymphocytes/immunology , Animals , Cichlids/immunology , Cichlids/metabolism , Fish Diseases/immunology , Fishes , Immunity, Cellular/immunology , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/immunology
13.
Fish Shellfish Immunol ; 127: 419-426, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35779809

ABSTRACT

Interleukin-2 inducible T cell kinase (ITK) plays a predominant role in the T-cell receptor (TCR) signaling cascade to ensure valid T-cell activation and function. Nevertheless, whether it regulates T-cell response of early vertebrates remains unknown. Herein, we investigated the involvement of ITK in the lymphocyte-mediated adaptive immune response, and its regulation to T-cell activation in the Nile tilapia Oreochromis niloticus. Both sequence and structure of O. niloticus ITK (OnITK) were remarkably conserved with its homologues from other vertebrates, implying its potential conserved function. OnITK mRNA was extensively expressed in lymphoid-related tissues, and with the relative highest level in peripheral blood. Once Nile tilapia was infected by Edwardsiella piscicida, OnITK in splenic lymphocytes was significantly up-regulated on 7-day post infection at both transcription and translation levels, suggesting that OnITK might involve in the primary adaptive immune response of teleost. Furthermore, upon splenic lymphocytes were stimulated by T-cell specific mitogen PHA, OnITK mRNA and protein levels were dramatically elevated. More importantly, treatment of splenic lymphocytes with specific inhibitor significantly crippled OnITK expression, which in turn impaired the inducible expression of T-cell activation markers IFN-γ, IL-2 and CD122, indicating the critical roles of ITK in regulating T-cell activation of Nile tilapia. Taken together, our results suggest that ITK takes part in the lymphocyte-mediated adaptive immunity of tilapia, and is indispensable for T-cell activation of teleost. Our findings thus provide novel evidences for understanding the mechanism regulating T-cell immunity of early vertebrates, as well as the evolution of adaptive immune system.


Subject(s)
Cichlids , Animals , Fish Proteins/chemistry , Interleukin-2/genetics , Lymphocyte Activation/genetics , Protein-Tyrosine Kinases , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes
14.
Fish Shellfish Immunol ; 128: 216-227, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35934242

ABSTRACT

As a pleiotropic cytokine mainly secreted by CD4+ T cells, interleukin (IL)-22 plays an important role in immune regulation and infection elimination. Despite IL-22 homologues have been identified in non-mammal, whether and how IL-22 participates in the adaptive immune response of early vertebrates have not been fully addressed. In this study, we identified an evolutionarily conserved IL-22 from Nile tilapia Oreochromis niloticus (defined as OnIL-22), proved by its properties regarding sequence, gene structure, functional domain, tertiary structure and phylogeny. IL-22 was broadly expressed in lymphoid-related tissues of tilapia, and with relatively higher levels in skin, gill, intestine and liver. The expression of OnIL-22 in spleen lymphocytes was markedly induced at the adaptive immune stage after Streptococcus agalactiae infection. Moreover, once lymphocytes were activated by PMA plus ionomycin or T-cell specific mitogen PHA in vitro, OnIL-22 expression was obviously up-regulated at both mRNA and protein levels. These results thus suggest that activated T cells produce IL-22 to take part in the adaptive immune response of tilapia. Furthermore, treatment of lymphocytes with recombinant OnIL-22 increased the expression of genes related to proliferation and survival, and further promoted the proliferation and reduced the apoptosis of lymphocytes during bacterial infection or T-cell activation. These cellular effects of IL-22 seem to be associated with JAK1/STAT3 axis downstream of IL-22, because IL-22 application not only elevated the mRNA expression of JAK1 and STAT3, but also enhanced their phosphorylation in lymphocytes. Altogether, we suggest that activated T cells produce IL-22 to promote lymphocyte proliferation and survival probability via JAK1/STAT3 signaling pathway, thus participating in adaptive immune response of Nile tilapia. Our study therefore provides helpful perspective for understanding the function and mechanism of adaptive immune system in teleost.


Subject(s)
Cichlids , Fish Diseases/immunology , Fish Proteins/metabolism , Interleukins/metabolism , Streptococcal Infections , Animals , Cell Proliferation , Cytokines/genetics , Gene Expression Regulation , Ionomycin , Mitogens , RNA, Messenger/metabolism , Streptococcal Infections/veterinary , Streptococcus agalactiae/physiology , T-Lymphocytes , Interleukin-22
15.
J Immunol ; 204(3): 569-585, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31871019

ABSTRACT

Calcium ion (Ca2+) is a widespread and primitive second messenger that regulates physiological cell functions in almost all life beings. Ca2+ influx-induced NFAT activation is essential for T cell function and adaptive immunity. However, whether and how Ca2+ signaling modulates T cell immunity in early vertebrates, especially in nontetrapods, remains largely unknown. To address these questions, a Nile tilapia (Oreochromis niloticus) model was employed to investigate the regulation of ancestral T cell immunity by Ca2+-NFAT signaling in jawed fish. In Nile tilapia, an evolutionarily conserved Ca2+-NFAT signaling pathway is involved in the primary adaptive immune response during Streptococcus agalactiae infection. Meanwhile, T cell signals trigger several events along the Ca2+-NFAT axis in this early vertebrate, including Ca2+ influx, calcineurin activation, and NFAT nuclear import. More critically, suppression of Ca2+-NFAT signaling by the calcineurin inhibitor cyclosporine A impairs primordial T cell activation, clonal expansion, and infection clearance. Mechanistically, Nile tilapia NFAT interacts with several other transcription factors for potent gene expression, and T cells in this nontetrapod employ Cabin1 and DYRK1A to regulate NFAT nuclear import and export, respectively. To the best of our knowledge, this study is the first to demonstrate the regulatory mechanism of Ca2+-NFAT signaling on T cell immunity in a nontetrapod species. We suggest that modulation of T cell immunity by Ca2+-NFAT signaling is a primitive strategy that already existed prior to the divergence of bony fish from the tetrapod lineage. The findings of this study provide valuable perspectives for understanding the evolution of adaptive immune system.


Subject(s)
Cell Nucleus/metabolism , Cichlids/immunology , Fish Proteins/metabolism , NFATC Transcription Factors/metabolism , Streptococcal Infections/metabolism , Streptococcus agalactiae/physiology , T-Lymphocytes/immunology , Active Transport, Cell Nucleus , Animals , Biological Evolution , Calcineurin/metabolism , Calcium/metabolism , Calcium Signaling , Cells, Cultured , Fish Proteins/genetics , Immunity, Cellular , NFATC Transcription Factors/genetics , Phylogeny , Vertebrates
16.
J Biol Chem ; 295(10): 3000-3016, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31996375

ABSTRACT

The mitogen-activated protein kinase (MAPK) cascade is an ancient and evolutionarily conserved signaling pathway involved in numerous physiological processes. Despite great advances in understanding MAPK-mediated regulation of adaptive immune responses in mammals, its contribution to T-cell immunity in early vertebrates remains unclear. Herein, we used Nile tilapia (Oreochromis niloticus) to investigate the regulatory roles of MAPK/extracellular signal-regulated kinase (Erk) signaling in ancestral T-cell immunity of jawed fish. We found that Nile tilapia possesses an evolutionarily conserved MAPK/Erk axis that is activated through a classical three-tier kinase cascade, involving sequential phosphorylation of RAF proto-oncogene serine/threonine-protein kinase (Raf), MAPK/Erk kinase 1/2 (Mek1/2), and Erk1/2. In Nile tilapia, MAPK/Erk signaling participates in adaptive immune responses during bacterial infection. Upon T-cell activation, the MAPK/Erk axis is robustly activated, and MAPK/Erk blockade by specific inhibitors severely impairs T-cell activation. Furthermore, signals from MAPK/Erk were indispensable for primordial T cells to proliferate and exert their effector functions. Mechanistically, activation of the MAPK/Erk axis promoted glycolysis via induction of the transcriptional regulator proto-oncogene c-Myc (c-Myc), to ensure the proper activation and proliferation of fish T cells. Our results reveal the regulatory mechanisms of MAPK/Erk signaling in T-cell immunity in fish and highlight a close link between immune signals and metabolic programs. We propose that regulation of T-cell immunity by MAPK/Erk is a basic and sophisticated strategy that evolved before the emergence of the tetrapod lineage. These findings shed light on the evolution of the adaptive immune system.


Subject(s)
Cichlids/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Fish Proteins/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , T-Lymphocytes/immunology , Adaptive Immunity , Aeromonas hydrophila/pathogenicity , Animals , Cichlids/immunology , Evolution, Molecular , Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors , Extracellular Signal-Regulated MAP Kinases/classification , Fish Diseases/drug therapy , Fish Diseases/immunology , Fish Diseases/microbiology , Glycolysis , Interferon-gamma/metabolism , Lymphocyte Activation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinase Kinases/classification , Phosphorylation , Phylogeny , Proto-Oncogene Proteins c-raf/metabolism , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , T-Lymphocytes/metabolism
17.
Fish Shellfish Immunol ; 113: 51-60, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33798718

ABSTRACT

Killer cell lectin-like receptor G subfamily 1 (KLRG1) is a receptor generally expressed on effector CD8+ T cells or NK cells at terminal differentiation stage, and it will be highly induced for lymphocyte cytotoxicity upon pathogen infection or lymphocyte activation. However, little is known about the character or function of KLRG1 in lower vertebrates. In present study, we reappraised a molecule that previously defined as KLRG1 in the genomic sequence of Nile tilapia Oreochromis niloticus, and identified it as an atypical KLRG1-like molecule (defined as On-KLRG1-L), and illustrated its potential function serving as a marker representing effector T lymphocytes of fish species. On-KLRG1-L consists of two C-type lectin-like domains (CTLDs) without transmembrane region, and the tertiary structure of the CTLD is highly alike to that in mouse KLRG1. As a CTLD-containing protein, the recombinant On-KLRG1-L could bind PGN and several microbes in vitro. On-KLRG1-L was widely expressed in immune-associated tissues, with the highest expression level in the gill. Once Nile tilapia is infected by Aeromonas hydrophila, mRNA level of On-KLRG1-L in spleen lymphocytes were significantly up-regulated on 5 days after infection. Meanwhile, On-KLRG1-L protein was also induced on 5 or 8 days after A. hydrophila infection. Furthermore, we found both mRNA and protein levels of On-KLRG1-L were dramatically enhanced within several hours after spleen lymphocytes were activated by T cell-specific mitogen PHA in vitro. More importantly, the ratio of On-KLRG1-L+ T cells was also augmented after PHA stimulation. The observations suggested that the KLRG1-like molecule from Nile tilapia participated in lymphocyte activation and anti-bacterial adaptive immune response, and could serve as an activation marker of T lymphocytes. Our study thus provided new evidences to understand lymphocyte-mediated adaptive immunity of teleost.


Subject(s)
Adaptive Immunity/genetics , Cichlids/immunology , Fish Diseases/immunology , Lectins, C-Type/immunology , Lymphocyte Activation/immunology , Receptors, Immunologic/immunology , Aeromonas hydrophila/physiology , Amino Acid Sequence , Animals , Biomarkers/metabolism , Fish Diseases/microbiology , Fish Proteins/genetics , Fish Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/veterinary , Lectins, C-Type/genetics , Protein Structure, Tertiary , Receptors, Immunologic/genetics , Sequence Alignment/veterinary
18.
J Immunol ; 203(5): 1172-1188, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31350356

ABSTRACT

T cells suddenly appeared in jawed fish ∼450 million years ago. Biological studies of fish T cells may provide helpful evidence to understand evolution of adaptive immune systems. To this end, using a Nile tilapia (Oreochromis niloticus) model, we revealed the regulatory mechanism of adaptive immunity mediated by ancestral T cells in jawed fish. Nile tilapia T cells as well as a tightly regulated mammalian/mechanistic target of rapamycin complex 1 (mTORC1) pathway participate in the cellular adaptive immune response during Streptococcus agalactiae infection. Blockade of mTORC1 signaling by rapamycin impairs T cell activation and Ag-induced proliferation in this early vertebrate. More critically, we show that signals from mTORC1 are indispensable for primordial effector T cells to eliminate infection by promoting the expression of proinflammatory cytokines, cytotoxic-related molecules, and proapoptotic genes. Mechanistically, teleost mTORC1 directs effector T cell function by coordinating multiple metabolic programs, including glycolysis, glutaminolysis, and lipogenesis through activating key transcription factors c-Myc, HIF-1α, and sterol regulatory element-binding proteins, and thus links immune signals to metabolic reprogramming in jawed fish. To our knowledge, these results represent the first description of the regulatory mechanism for T cell-mediated adaptive immunity in a fish species. From an evolutionary viewpoint, our study suggests that primordial T cells are armed with sophisticated regulatory strategies like those in modern T cells prior to the divergence of bony fish from the tetrapod lineage. Therefore, our findings fill in an important gap regarding evolution of the adaptive immune system.


Subject(s)
Cichlids/immunology , Lymphocyte Activation , Mechanistic Target of Rapamycin Complex 1/physiology , T-Lymphocytes/immunology , Adaptive Immunity , Animals , Evolution, Molecular , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/analysis , Receptors, Antigen, T-Cell/physiology , Signal Transduction , TOR Serine-Threonine Kinases/physiology
19.
Fish Shellfish Immunol ; 106: 1120-1130, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32971270

ABSTRACT

Ribosomal protein S6 kinase beta-1 (S6K1) is a serine/threonine kinase downstream of the mechanistic target of rapamycin (mTOR) pathway, and plays crucial roles in immune regulation. Although remarkable progress has been achieved with a mouse model, how S6K1 regulates adaptive immunity is largely unknown in early vertebrates. In this study, we identified an S6K1 from Nile tilapia Oreochromis niloticus (OnS6K1), and further investigated its potential regulatory role on the adaptive immunity of this fish species. Both sequence and structure of OnS6K1 were highly conserved with its homologs from other vertebrates and invertebrates. OnS6K1 was widely expressed in immune tissues, and with a relative higher expression level in the liver, spleen and head kidney. At the adaptive immune stage of Nile tilapia that infected with Aeromonas hydrophila, mRNA expression of OnS6K1 and its downstream effector S6 was significantly up-regulated in spleen lymphocytes. Meanwhile, their phosphorylation level was also enhanced during this process, suggesting that S6K1/S6 axis participated in the primary response of anti-bacterial adaptive immunity in Nile tilapia. Furthermore, after spleen lymphocytes were activated by the T cell-specific mitogen PHA or lymphocytes agonist PMA in vitro, mRNA and phosphorylation levels of S6K1 were elevated, and phosphorylation of S6 was also enhanced. Once S6K1 activity was blocked by a specific inhibitor, both mRNA and phosphorylation levels of S6 were severely impaired. More importantly, blockade of S6K1/S6 axis reduced the expression of T cell activation marker IFN-γ and CD122 in PHA-activated spleen lymphocytes, indicating the essential role of S6K1/S6 axis in regulating T cell activation of Nile tilapia. Together, our study suggests that S6K1 and its effector S6 regulate lymphocyte activation of Nile tilapia, and in turn promote lymphocyte-mediated adaptive immunity. This study enriched the mechanism of adaptive immune response in teleost and provided useful clues to understand the evolution of adaptive immune system.


Subject(s)
Aeromonas hydrophila , Cichlids/immunology , Fish Diseases/immunology , Fish Proteins/immunology , Gram-Negative Bacterial Infections/immunology , Ribosomal Protein S6 Kinases, 70-kDa/immunology , Adaptive Immunity , Animals , Cichlids/genetics , Fish Proteins/genetics , Gram-Negative Bacterial Infections/veterinary , Lymphocyte Activation , Ribosomal Protein S6 Kinases, 70-kDa/genetics , T-Lymphocytes/immunology
20.
Fish Shellfish Immunol ; 93: 232-239, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31340169

ABSTRACT

As an important economic mollusk in coastal areas, Octopus ocellatus dependents on innate immune system to resist the invasion of microorganisms. Lysozyme is a crucial effector owing to its significant lytic activity against bacterial pathogens during the immune responses. In this study, characteristic and immune function of an I-type lysozyme from O. ocellatus (OoLyz) was investigated. OoLyz shared a close relationship with the lysozymes from other bivalve mollusks. The mRNA of OoLyz exhibited a broad transcript in different tissues/organs, and with the greatest expression in hepatopancreas. The expression of OoLyz was significantly raised when O. ocellatus was infected by Vibrio anguillarum or Micrococcus luteus, suggesting OoLyz participated in innate immune response of host. Prokaryotic recombinant OoLyz (rOoLyz) exhibited obvious bacteriolysis ability towards both gram-negative bacteria V. anguillarum and Escherichia coli, and gram-positive bacteria M. luteus and Staphylococcus aureus. The bacteriolysis activities of rOoLyz towards gram-negative but not gram-positive bacteria was heat stable, indicating that OoLyz might clear gram-positive bacterium by enzyme-dependent mechanisms, but eliminate gram-negative microbe via enzymatic activity independent way. Scanning electron microscopy analysis showed that rOoLyz destroyed microbes by damaging cell wall. More importantly, the fact that rOoLyz could directly degrade the peptidoglycan, further revealed its bactericidal mechanism as a muramidase. Our results revealed the essential role of I-type lysozyme in the innate immunity of O. ocellatus, and shed new light to understand the mechanism of immune defense of mollusks.


Subject(s)
Gene Expression Regulation/immunology , Immunity, Innate/genetics , Muramidase/genetics , Muramidase/immunology , Octopodiformes/genetics , Octopodiformes/immunology , Amino Acid Sequence , Animals , Base Sequence , Female , Gene Expression Profiling , Gram-Negative Bacteria/physiology , Gram-Positive Bacteria/physiology , Male , Muramidase/chemistry , Octopodiformes/microbiology , Phylogeny , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL