Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sensors (Basel) ; 20(8)2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32290511

ABSTRACT

This paper presented a non-uniform multiphase (NUMP) time-to-digital converter (TDC) implemented in a field-programmable gate array (FPGA) with real-time automatic temperature compensation. NUMP-TDC is a novel, low-cost, high-performance TDC that has achieved an excellent performance in Altera Cyclone V FPGA. The root mean square (RMS) for the intrinsic timing resolution was 2.3 ps. However, the propagation delays in the delay chain of some FPGAs (for example, the Altera Cyclone 10 LP) vary significantly as the temperature changes. Thus, the timing performances of NUMP-TDCs implemented in those FPGAs are significantly impacted by temperature fluctuations. In this study, a simple method was developed to monitor variations in propagation delays using two registers deployed at both ends of the delay chain and compensate for changes in propagation delay using a look-up table (LUT). When the variations exceeded a certain threshold, the LUT for the delay correction was updated, and a bin-by-bin correction was launched. Using this correction approach, a resolution of 8.8 ps RMS over a wide temperature range (5 °C to 80 °C) had been achieved in a NUMP-TDC implemented in a Cyclone 10 LP FPGA.

2.
IEEE Trans Instrum Meas ; 68(9): 3200-3210, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31413382

ABSTRACT

Reading out from large-scale silicon photomultiplier (SiPM) arrays is a fundamental technical obstacle blocking the application of revolutionary SiPM technologies in nuclear imaging systems. Typically, it requires using dedicated application-specific integrated circuits (ASICs) that need a long iterative process, special expertise, and tools to develop. The pico-positron emission tomography (Pico-PET) electronics system is an advanced 100-channel readout system based on 1-bit sigma-delta modulation and a field-programmable gate array (FPGA). It is compact (6 × 6 × 0.8 cm3 in size), consumes little power (less than 3W), and is constructed with off-the-shelf low-cost components. In experimental studies, the Pico-PET system demonstrates excellent and consistent performance. In addition, it has some unique features that are essential for nuclear imaging systems, such as its ability to measure V-I curves, breakdown voltages, and the dark currents of 100 SiPMs accurately, simultaneously, and in real time. The flexibility afforded by FPGAs allows multiple-channel clustering and intelligent triggering for different detector designs. These highly sought-after features are not offered by any other ASICs and electronics systems developed for nuclear imaging. We conclude that the Pico-PET electronics system provides a practical solution to the long-standing bottleneck problem that has limited the development of potentially advanced nuclear imaging technology using SiPMs.

3.
Am J Cardiol ; 212: 127-132, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38169159

ABSTRACT

Heart failure (HF) can damage various organs, including the liver, a phenomenon known as "cardiohepatic syndrome." The latter is characterized by liver congestion and hepatic artery hypoperfusion, which can lead to liver damage. In this study, we aimed to assess liver damage quantitatively in chronic HF (CHF) with sound touch elastography (STE). A total of 150 subjects were enrolled, including HF with reduced ejection fraction (HFrEF) groups (left ventricular ejection fraction ≤40%, n = 45), HF with mildly reduced ejection fraction (HFmrEF) groups (left ventricular ejection fraction between 41% and 49%, n = 40), and right-sided HF (RHF) groups (n = 25); normal groups (n = 40). Liver stiffness measurement (LSM) was performed in all subjects by STE. The other hepatic parameters were also measured. The LSM was 5.4 ± 1.1 kPa in normal subjects and increased slightly to 5.9 ± 0.7 kPa in patients with HFmrEF. However, the HFrEF and RHF groups had significantly higher LSMs of 8.4 ± 2.0 kPa and 10.3 ± 2.7 kPa, respectively. The LSM of HFrEF was significantly higher than that of HFmrEF, whereas the increase in LSM in patients with RHF was significant relative to HFmrEF and HFrEF. In addition, the other parameters showed abnormal values in only RHF and HFrEF. In conclusion, STE is a useful clinical technique for the noninvasive evaluation of liver stiffness associated with CHF, which could help patients with CHF manage their treatment regimens.


Subject(s)
Elasticity Imaging Techniques , Heart Failure , Liver Diseases , Ventricular Dysfunction, Left , Humans , Chronic Disease , Heart Failure/diagnostic imaging , Heart Failure/complications , Liver Diseases/complications , Prognosis , Stroke Volume , Ventricular Dysfunction, Left/complications , Ventricular Function, Left
4.
Nucl Instrum Methods Phys Res A ; 933: 48-55, 2019 Jul 21.
Article in English | MEDLINE | ID: mdl-33132469

ABSTRACT

The signal-to-noise ratio (SNR) of the reconstructed image of Positron Emission Tomography (PET) can be improved by the timing measurement. In this article, we designed, fabricated and tested 32 time-of-flight (TOF) detectors for the second generation of Tachyon TOF-PET scanners. The detector module consists of two arrays of 2 × 12 lutetium-yttrium oxyorthosilicate (LYSO) crystal cubes of 6 ×6× 6 mm3. The discrete crystals were coupled to the 6 mm silicon photomultipliers (SiPMs) with optical glue. All the SiPM were tested for dark current. To correct the errors in the timing measurements caused by time-walk, two compensation methods (log-correction and linear-correction) based on the relationship between energy and timing information were purposed. As a comparison, the SiPM arrays coupled to 4 mm and 6 mm side crystal cube without optical glue were tested for coincidence timing resolution (CTR). The mean and standard deviations (SD) of dark current for the 1536 tested SiPMs were 12.72 +/- 1.70 µA at the bias voltage of 31.5 V and the temperature of 20 °C (±1 °C). CTR performance has increased by ~5% within a narrow energy window, and ~10% in a wide energy window by log-correction. The mean and SD of the CTR of 6 mm side crystal cube glue coupled was 126.9 +/- 3.6 ps for the 768 pairs of tested SiPMs. The detector is expected to provide a technical reference for the next generation of ultra-fast CTR commercial PET scanner using multilayer detectors.

5.
Med Phys ; 46(8): 3385-3398, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31107969

ABSTRACT

PURPOSE: Depth of interaction (DOI) decoding capability is of great importance for positron emission tomography (PET) requiring high resolution. In this study, we presented a novel low-cost DOI detector design with four crystals coupling to one SiPM, based on the method of rectangular light-sharing window (RLSW). A prototype detector was constructed, calibrated, and assessed using the methods of homogeneous radiation and flood map analysis. METHODS: The DOI detector was constructed with a 4 × 4 array of lutetium-yttrium oxyorthosilicate (LYSO) crystals (2.95 mm × 2.95 mm × 20 mm3 ), barium sulfate (BaSO4 ) reflectors, and optical glues. A RLSW 7 mm in height was deployed in the BaSO4 reflectors. A non-DOI detector with identical dimensions and without RLSW was also constructed for comparison. The light-output surface of the detector was air-coupled with a 4 × 4 array of SiPMs (3 mm × 3 mm2 ). The signals generated from the 16 SiPMs were read out by a custom-designed electronic system, and the signals from four adjacent 3 mm SiPMs were summed into one signal to emulate a 2 × 2 array of 6 mm SiPMs. The RLSW caused the DOI-related position shifts of the crystal spots in the flood map. A homogeneous radiation method was used to establish the transfer functions to convert the spot shifts measured from the flood map into DOI measurements. The accuracy of the DOI measurements was assessed with data acquired using the conventional collimated radiation method. RESULTS: All 16 crystals are distinctly separated from each other in the flood map. Twelve crystals, including four central crystals and eight edge crystals, have the DOI capability. The full width half maximum (FWHM) of the DOI measurements of the central crystals and the edge crystals are 3.06 ± 0.08 and 3.79 ± 0.15 mm, respectively, for the configuration with four crystals coupling to one SiPM. By contrast, the FWHMs (3.98 ± 0.16 and 5.12 ± 0.38 mm, respectively) are slightly worse for the configuration with one crystal coupling to one SiPM. The average and standard deviation (STD) of the FWHM energy resolutions of the DOI detector and non-DOI detector were 10.2% ± 0.7% and 10.7% ± 1.7%, respectively. Their FWHM coincidence timing resolutions were 197.0 ± 9.6 and 206.4 ± 13.3 ps, respectively. The RLSW had no significant impact on the energy resolutions and timing resolutions of the DOI detector. CONCLUSIONS: The novel four-crystals-to-one-SiPM coupling technology is a cost-efficient approach to construct high-performance detector modules with DOI capability. The methods of homogeneous radiation and flood map analysis are easy to perform and of good performance. Those methods can be adapted in the clinic PET scanners to enable the capability of DOI measurements.


Subject(s)
Light , Positron-Emission Tomography/instrumentation , Silicon
6.
Phys Med Biol ; 64(15): 155009, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31239424

ABSTRACT

This paper presents a unique preclinical positron emission tomography (PET) detector constructed with a monolithic scintillator ring (MSR) and two rings of silicon photomultipliers (SiPM). The inner diameter, outer diameter and length of the MSR were 48.5 mm, 58.5 mm, and 25.1 mm, respectively. The two SiPM rings, constructed with 46 SiPMs, were air-coupled to the two ends of the MSR detector. The center of gravity (COG) and artificial neural network (ANN) methods were adapted to decode the positions of the gamma interactions in the circumferential (θ) and axial (Z) directions, respectively. Collimating systems, consisting of a tungsten collimator and a high-precision displacement and rotating platform, were constructed to assess the decoding accuracies of the MSR detector in both θ and Z directions. The average intrinsic full-width half maximums (FWHMs) and mean absolute errors (MAEs) of the decoding accuracies were 0.94 mm and 0.33 mm in the circumferential direction, 2.45 mm and 1.08 mm in the axial direction. An energy resolution of 10.7% was measured at 511 keV. The scintillating photons generated by a pair of coincidence gamma photons overlap with each other, and cause circumferential parallax errors in the lines of response (LOR). The experimental results show that the average FWHM errors in the θ direction increased slightly from 0.94 mm to 1.14 mm when Δθ of the two single events was larger than 70°. The imaging performance of the MSR detector was also initially assessed with a Derenzo phantom filled with 18F-FDG. The rods with a diameter larger than 1.2 mm can be resolved. The energy resolutions were 12.3% at 511 keV (single events), and 11.4% at 1022 keV (coincidence events). We concluded that it is feasible to construct the high-performance preclinical PET scanners using one or multiple MSR detectors.


Subject(s)
Positron-Emission Tomography/instrumentation , Gamma Rays , Phantoms, Imaging , Photons
7.
Phys Chem Chem Phys ; 9(48): 6327-32, 2007 Dec 28.
Article in English | MEDLINE | ID: mdl-18060162

ABSTRACT

The kinetics of adsorption of CO(2) molecules dissolved in aqueous solution onto a hydrophobised silica surface were investigated using a quartz crystal microbalance (QCM). The results of this investigation were compared with those obtained earlier from tapping mode atomic force microscopy (TMAFM) under the same experimental conditions (J. Yang, J. Duan, D. Fornasiero, J. Ralston, J. Phys. Chem. B., 2003, 107(25), 6139-6147; ref. 1). The QCM results represent the early stage of CO(2) gas adsorption (<20 min), before CO(2) gas bubbles adsorbed on the surface can be directly observed by TMAFM. The QCM results confirmed our observation from TMAFM imaging: that CO(2) gas molecules present in solution only adsorb on silica when its surface is hydrophobic. More importantly, the results showed that gas adsorption/bubble growth undergoes two consecutive kinetic processes: a slow and a fast adsorption process.


Subject(s)
Carbon Dioxide/chemistry , Gold/chemistry , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Adsorption , Crystallization , Electrodes , Hydrophobic and Hydrophilic Interactions , Kinetics , Microscopy, Atomic Force/methods , Solutions/chemistry , Surface Properties , Time Factors , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL