ABSTRACT
Lonicera japonica Flos is a valuable herb in the Lonicerae family. While transcriptomic studies on L. japonica have focused on different tissues (stems, leaves, flowers) or flowering stages, few have investigated the molecular mechanisms underlying chemical composition synthesis influenced by exogenous factors, such as foliar fertilization. Moreover, most transcriptomic studies on L. Japonica have been conducted on chlorogenic acid and luteoloside, and the molecular synthesis mechanism of the overall chemical composition has not been analyzed. Methods: We conducted a single-factor, four-level foliar fertilization experiment using yeast polysaccharides. Different yeast polysaccharides concentrations were sprayed on L. japonica for six consecutive days with dynamic sampling. High-performance liquid chromatography determined the active ingredients in each group. The two groups exhibiting the most significant differences were selected for transcriptomic analysis to identify key synthetic genes responsible for L. japonica's active ingredients. Key results: Principal component analysis conducted on samples collected on September 8 revealed significant differences in the active ingredient amounts between the 0.1 g/L yeast polysaccharides treatment group and the control group. Transcriptome sequencing analysis identified 218 significantly differentially expressed genes, including 60 upregulated and 158 downregulated genes. Twelve differential genes involved in the chemical components synthesis pathway of L. japonica under yeast polysaccharides treatment were identified: PAL1, PAL2, PAL3, 4CL1, 4CL, CHS1, CHS2, CHS, CHI1, CHI2, F3H, and SOH. Conclusions: This study contributes to the theoretical understanding of essential synthetic genes associated with L. japonica's active ingredients. It offers data support for further gene exploration and sheds light on the molecular mechanisms underlying L. japonica quality formation. These findings hold significant implications for enhancing the content of secondary metabolites of L. japonica. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01482-1.
ABSTRACT
BACKGROUND: The association between muscle defects and hypertension is well-established. However, the absence of pertinent and uncomplicated clinical indicators presents a challenge. Relative muscle strength (RMS) may offer a viable indicator. This study aimed to explore the association between RMS and hypertension. METHODS: A total of 12,720 individuals aged ≥ 45 years from the 2011 wave of the China Health and Retirement Longitudinal Study (CHARLS) were included. Grip strength was recorded and appendicular skeletal muscle mass (ASM) was estimated using a validated mathematical formula. The RMS was calculated as the ratio of grip strength to ASM. Hypertension was determined based on previous diagnosis, history of hypertension medication use, and current blood pressure. Logistic regression models were employed to investigate the relationship between RMS and hypertension. RESULTS: The prevalence of hypertension was 41.7% (5,307/12,720 patients). RMS was negatively correlated with hypertension with an OR (95% CI) of 0.68 (0.59-0.79) for males, 0.81 (0.73-0.90) for females, and 0.78 (0.72-0.85) for the entire population after adjusting for related covariates including age, education, marital history, smoking history, drinking history, diabetes, hyperlipidemia, and obesity. The trend test showed a linear association among males, females, or the entire population. Stratified analysis showed a consistent negative correlation between RMS and hypertension. CONCLUSIONS: Higher RMS is an independent protective factor against hypertension and efforts to promote RMS may be beneficial for the prevention and management of hypertension.
Subject(s)
East Asian People , Hypertension , Male , Middle Aged , Female , Humans , Adult , Aged , Longitudinal Studies , Hypertension/epidemiology , Muscle Strength , Obesity/epidemiology , China/epidemiology , Hand StrengthABSTRACT
This study aims to reveal the effects of different growth patterns and years on the quality of Saposhnikoviae Radix samples. The apparent colors of the powder samples were quantified by a colorimeter, and the total color values(E~*ab) were calculated. The content of prim-O-glucosylcimifugin, cimifugin, 4'-O-ß-D-glucosyl-5-O-methylvisamminol, sec-O-glucosylhamaudol, and 3'-O-angeloylhamaudol in the samples was simultaneously determined by high performance liquid chromatography(HPLC). Cluster analysis, principal component analysis, partial least squares discriminant analysis, and Pearson correlation analysis were performed to analyze the powder chromatic values and the content of 5 components. The results showed that the E~*ab values of the samples were in the order of wild group<multiple-year-old group<one-year-old group. The content of cimifugin, sec-O-glucosylhamaudol, and 3'-O-angeloylhamaudol in the wild group was significantly higher than that in the multiple-year-old and one-year-old groups. The results of multivariate statistical analysis showed that the quality of multiple-year-old group varied greatly. The quality of the multiple-year-old samples was close to that of the wild group and better than that of the one-year-old group. The variable importance in the projection(VIP) values of b~*, 3'-O-angeloylhamaudol content, E~*ab, and L~* were all larger than 1, and that of cimifugin content was close to 1. The E~*ab value was negatively correlated with the content of prim-O-glucosylcimifugin, cimifugin, sec-O-glucosylhamaudol, and 3'-O-angeloylhamaudol, while it had no linear correlation with the 4'-O-ß-D-glucosyl-5-O-methylvisamminol content. The growth patterns and years had different effects on the quality of Saposhnikoviae Radix samples. The chromatic values of Saposhnikoviae Radix and the content of 5 components can be used to evaluate the quality of Saposhnikoviae Radix, and 3'-O-angeloylhamaudol and cinmifugin can be considered as markers for the quality control of Saposhnikovia divaricata during the growing process.
Subject(s)
Apiaceae , Drugs, Chinese Herbal , Powders , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/analysis , Plant Roots/chemistryABSTRACT
To comprehensively evaluate the quality of commercial Ginseng Radix et Rhizoma Rubra, 43 batches of commercial Ginseng Radix et Rhizoma Rubra were collected to determine the content of nine ginsenosides Rg_1, Re, Rb_1, Rk_3, Rh_4, 20(S)-Rg_3, 20(R)-Rg_3, Rk_1, and Rg_5 by high performance liquid chromatography(HPLC). The quality of the commercial Ginseng Radix et Rhizoma Rubra was evaluated by correlation analysis, principal component analysis, factor analysis, analysis of variance(ANOVA), and cluster heatmap analysis. The content determination indicated that the content of common ginsenosides in commercial Ginseng Radix et Rhizoma Rubra were higher while that of rare ginsenosides were lower. Multivariate statistical analysis revealed that ginsenosides Rg_1 and Rb_1 were significantly positively correlated with rare ginsenosides, and Rg_1, Rb_1 and rare ginsenosides played an important role in evaluating the quality of commercial Ginseng Radix et Rhizoma Rubra. In combination with the processing principle and current quality situation of Ginseng Radix et Rhizoma Rubra, it is recommended to improve the content limit of Rb_1 in the existing quality standards.
Subject(s)
Drugs, Chinese Herbal , Ginsenosides , Panax , Ginsenosides/analysis , Rhizome/chemistry , Plant Roots/chemistry , Chromatography, High Pressure LiquidABSTRACT
A series of photoswitchable cyclopentadienone derivative dimers bearing bromo, thienyl, 4-(dimethylamino)phenyl, 3-pyridinyl, 4-nitrophenyl and cyano groups was designed and facilely synthesized. Photoswitching properties such as the photoconversions in the photostationary state (PSS), the thermal kinetics and thermal half-lives of photoisomers were systematically investigated. These photoswitches show high fatigue resistance and large photoconversions in the PSS. This work proves that the photoswitching properties of photoswitches based on cyclopentadienone dimers can be tuned by substitution groups and also pave the way to functionalize the cyclopentadienone derivative dimer-based photoswitch, which is important for its future applications.
ABSTRACT
This paper explored the ecologically suitable areas for growing Scutellaria baicalensis using Geographic Information System for Global Medicinal Plants(GMPGIS), to figure out the resource distribution of S. baicalensis worldwide and provide a scientific basis for its scientific introduction. A total of 349 S. baicalensis sampling sites were selected all over the world for GMPGIS-based analy-sis of the ecologically suitable areas with six ecological factors including annual average temperature, average temperature during the coldest season, average temperature during the warmest season, average annual precipitation, average annual relative humidity, and annual average illumination and soil type as the ecological indexes. The results demonstrated that the ecologically suitable areas for growing S. baicalensis were mostly located in the Northern hemisphere, and the suitable areas in the United States, China, and Russia accounted for 19.25%, 18.66%, and 13.15% of the total area worldwide, respectively. In China, the Inner Mongolia, Heilongjiang province, and Yunnan province occupied the largest proportions of the total area, namely 14.28%, 8.72%, and 6.18%, respectively. As revealed by ecological factors of each sampling site, S. baicalensis was resistant to low temperature but not to high temperature. The adaptive range of average annual precipitation is narrower than that of average annual air humidity. The suitable soils were mainly inceptisol, alfisol, and fluvisol. High temperature and rainy climate or excessively high soil bulk density was not conducive to the growth of S. baicalensis. The adoption of GMPGIS enabled to obtain areas with the greatest ecological similarity for S. baicalensis, which were reliable data supporting the exploration of resource distribution and reasonable introduction of S. baicalensis.
Subject(s)
Plants, Medicinal , Scutellaria baicalensis , China , Climate , SoilABSTRACT
BACKGROUND: Multiple sclerosis (MS) is an immune-mediated demyelinated disease of the central nervous system. Activation of microglia is involved in the pathogenesis of myelin loss. OBJECTIVE: This study is focused on the role of Hv1 in regulating demyelination and microglial activation through reactive oxygen species (ROS) production after lysophosphatidylcholine (LPC)-mediated demyelination. We also explored autophagy in this process. METHODS: A model of demyelination using two-point LPC injection into the corpus callosum was established. LFB staining, immunofluorescence, Western blot, and electron microscopy were used to study the severity of demyelination. Microglial phenotype and autophagy were detected by immunofluorescence and Western blot. Morris water maze was used to test spatial learning and memory ability. RESULTS: We have identified that LPC-mediated myelin damage was reduced by Hv1 deficiency. Furthermore, we found that ROS and autophagy of microglia increased in the demyelination region, which was also inhibited by Hv1 knockout. CONCLUSION: These results suggested that microglial Hv1 deficiency ameliorates demyelination through inhibition of ROS-mediated autophagy and microglial phenotypic transformation.
Subject(s)
Autophagy/physiology , Demyelinating Diseases/metabolism , Ion Channels/deficiency , Lysophosphatidylcholines/toxicity , Microglia/metabolism , Reactive Oxygen Species/metabolism , Animals , Autophagy/drug effects , Demyelinating Diseases/chemically induced , Demyelinating Diseases/pathology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/drug effects , Microglia/pathologyABSTRACT
The synthesis of open-shell polycyclic hydrocarbons with large diradical characters is challenging because of their high reactivities. Herein, two diindeno-fused corannulene regioisomers DIC-1 and DIC-2, curved fragments of fullerene C104 , were synthesized that exhibit open-shell singlet ground states. The incorporation of the curved and non-alternant corannulene moiety within diradical systems leads to significant diradical characters as high as 0.98 for DIC-1 and 0.89 for DIC-2. Such high diradical characters can presumably be ascribed to the re-aromatization of the corannulene π system. Although the DIC compounds have large diradical characters, they display excellent stability under ambient conditions. The half-lives are 37â days for DIC-1 and 6.6â days for DIC-2 in solution. This work offers a new design strategy towards diradicaloids with large diradical characters yet maintain high stability.
ABSTRACT
OBJECTIVE: To study the etiology and genetic diagnosis of children with short stature. METHODS: A retrospective analysis was performed to study the etiological distribution and clinical features of 86 children with short stature. RESULTS: A total of 6 causes were observed in these children, among which idiopathic short stature (ISS, 41%) and growth hormone deficiency (GHD, 29%) were the most common causes, followed by genetic diseases (14%). There were no significant differences in age at the time of diagnosis, body height, body length and weight at birth, body height of parents and insulin-like growth factor-1 levels between the genetic disease group and the ISS/GHD groups (P>0.05). Compared with the ISS group, the genetic disease group had significantly lower deviation from the 3rd percentile for the height of children of the same age and sex (ΔP3) and height standard deviation score (P<0.05), while there were no significant differences between the genetic disease and GHD groups (P>0.05). The analysis of the clinical manifestations for the genetic disease group showed heterogeneity and phenotypic overlap in children with different genetic diseases. CONCLUSIONS: ISS, GHD and genetic diseases are major causes of short stature in children. For children with severe short stature, genetic testing should be performed to make a definitive diagnosis after GHD has been excluded.
Subject(s)
Genetic Testing , Body Height , Child , Dwarfism, Pituitary , Growth Disorders , Human Growth Hormone , Humans , Retrospective StudiesABSTRACT
OBJECTIVE: The objective of this study was to investigate the association between metabolically healthy obese (MHO) phenotype and the risk of cardiovascular disease (CVD). METHODS: A total of 9393 subjects aged ≥40 years were enrolled in the cohort study (2011-2015). The participants were stratified by body mass index category and metabolic risk at baseline, and incidence of CVD was ascertained at follow-up. RESULTS: The MHO accounted for 6.7%. Compared with the metabolically healthy normal weight (MHNW) group, MHO subjects demonstrated increased risk of CVD events (HR = 1.91; 95% CI, 1.13-3.24). In people with obesity, there was no significant difference on increasing risk of incidence of CVD in the metabolically unhealthy individuals compared with metabolically healthy individuals (HR = 1.19; 95% CI, 0.74-1.91). Female (OR = 1.97; 95% CI, 1.06-3.64), smoking (OR = 2.09; 95% CI, 1.06-4.10), a larger waist circumference (OR = 1.07; 95% CI, 1.03-1.10) and higher LDL cholesterol levels (OR = 1.55; 95% CI, 1.20-2.00) were independent risk factors of the development of the MHO to the metabolically unhealthy obese (MUO) phenotype. CONCLUSIONS: The risk of CVD events of MHO phenotypes is similar to MUO phenotypes; both are higher than the MHNW phenotypes.
ABSTRACT
The secreted ligand Sonic Hedgehog (Shh) organizes the pattern of cellular differentiation in the ventral neural tube. For the five neuronal subtypes, increasing levels and durations of Shh signaling direct progenitors to progressively more ventral identities. Here we demonstrate that this mode of action is not applicable to the generation of the most ventral cell type, the nonneuronal floor plate (FP). In chick and mouse embryos, FP specification involves a biphasic response to Shh signaling that controls the dynamic expression of key transcription factors. During gastrulation and early somitogenesis, FP induction depends on high levels of Shh signaling. Subsequently, however, prospective FP cells become refractory to Shh signaling, and this is a prerequisite for the elaboration of their identity. This prompts a revision to the model of graded Shh signaling in the neural tube, and provides insight into how the dynamics of morphogen signaling are deployed to extend the patterning capacity of a single ligand. In addition, we provide evidence supporting a common scheme for FP specification by Shh signaling that reconciles mechanisms of FP development in teleosts and amniotes.
Subject(s)
Body Patterning/physiology , Hedgehog Proteins/metabolism , Neural Tube/cytology , Neural Tube/growth & development , Signal Transduction , Stem Cells/physiology , Animals , Biomarkers/metabolism , Chick Embryo , Down-Regulation , Embryo, Mammalian , Embryo, Nonmammalian , Female , Mice , Neurons/cytology , Somites/growth & development , Time Factors , ZebrafishABSTRACT
CD97 belongs to the adhesion GPCR family characterized by a long ECD linked to the 7TM via a GPCR proteolytic site (GPS) and plays important roles in modulating cell migration and invasion. CD97 (EGF1-5) is a splicing variant of CD97 that recognizes a specific ligand chondroitin sulfate on cell membranes and the extracellular matrix. The aim of this study was to elucidate the extracellular molecular basis of the CD97 EGF1-5 isoform in protein expression, auto-proteolysis and cell adhesion, including epidermal growth factor (EGF)-like domain, GPCR autoproteolysis-inducing (GAIN) domain, as well as GPS mutagenesis and N-glycosylation. Both wild-type (WT) CD97-ECD and its truncated, GPS mutated, PNGase F-deglycosylated, and N-glycosylation site mutated forms were expressed and purified. The auto-proteolysis of the proteins was analyzed with Western blotting and SDS-PAGE. Small angle X-ray scattering (SAXS) and molecular modeling were used to determine a structural profile of the properly expressed receptor. Potential N-glycosylation sites were identified using MS and were modulated with PNGase F digestion and glyco-site mutations. A flow cytometry-based HeLa cell attachment assay was used for all aforementioned CD97 variants to elucidate the molecular basis of CD97-HeLa interactions. A unique concentration-dependent GPS auto-proteolysis was observed in CD97 EGF1-5 isoform with the highest concentration (4 mg/mL) per sample was self-cleaved much faster than the lower concentration (0.1 mg/mL), supporting an intermolecular mechanism of auto-proteolysis that is distinct to the reported intramolecular mechanism for other CD97 isoforms. N-glycosylation affected the auto-proteolysis of CD97 EGF1-5 isoform in a similar way as the other previously reported CD97 isoforms. SAXS data for WT and deglycosylated CD97ECD revealed a spatula-like shape with GAIN and EGF domains constituting the body and handle, respectively. Structural modeling indicated a potential interaction between the GAIN and EGF5 domains accounting for the absence of expression of the GAIN domain itself, although EGF5-GAIN was expressed similarly in the wild-type protein. For HeLa cell adhesion, the GAIN-truncated forms showed dramatically reduced binding affinity. The PNGase F-deglycosylated and GPS mutated forms also exhibited reduced HeLa attachment compared with WT CD97. However, neither N-glycosylation mutagenesis nor auto-proteolysis inhibition caused by N-glycosylation mutagenesis affected CD97-HeLa cell interactions. A comparison of the HeLa binding affinities of PNGase F-digested, GPS-mutated and N-glycosylation-mutated CD97 samples revealed diverse findings, suggesting that the functions of CD97 ECD were complex, and various technologies for function validation should be utilized to avoid single-approach bias when investigating N-glycosylation and auto-proteolysis of CD97. A unique mechanism of concentration-dependent auto-proteolysis of the CD97 EGF1-5 isoform was characterized, suggesting an intermolecular mechanism that is distinct from that of other previously reported CD97 isoforms. The EGF5 and GAIN domains are likely associated with each other as CD97 expression and SAXS data revealed a potential interaction between the two domains. Finally, the GAIN and EGF domains are also important for CD97-HeLa adhesion, whereas N-glycosylation of the CD97 GAIN domain and GPS auto-proteolysis are not required for HeLa cell attachment.
Subject(s)
Antigens, CD/metabolism , Cell Adhesion/physiology , Proteolysis , Antigens, CD/genetics , Glycosylation , HeLa Cells , Humans , Models, Structural , Mutagenesis , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/metabolism , Protein Isoforms/metabolism , Receptors, G-Protein-CoupledABSTRACT
Reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) serve as vital mediators essential for preserving intracellular redox homeostasis within the human body, thereby possessing significant implications across physiological and pathological domains. Nevertheless, deviations from normal levels of ROS, RNS, and RSS disturb redox homeostasis, leading to detrimental consequences that compromise bodily integrity. This disruption is closely linked to the onset of various human diseases, thereby posing a substantial threat to human health and survival. Small-molecule fluorescent probes exhibit considerable potential as analytical instruments for the monitoring of ROS, RNS, and RSS due to their exceptional sensitivity and selectivity, operational simplicity, non-invasiveness, localization capabilities, and ability to facilitate in situ optical signal generation for real-time dynamic analyte monitoring. Due to their distinctive transition from their spirocyclic form (non-fluorescent) to their ring-opened form (fluorescent), along with their exceptional light stability, broad wavelength range, high fluorescence quantum yield, and high extinction coefficient, rhodamine fluorophores have been extensively employed in the development of fluorescent probes. This review primarily concentrates on the investigation of fluorescent probes utilizing rhodamine dyes for ROS, RNS, and RSS detection from the perspective of different response groups since 2016. The scope of this review encompasses the design of probe structures, elucidation of response mechanisms, and exploration of biological applications.
Subject(s)
Fluorescent Dyes , Reactive Nitrogen Species , Reactive Oxygen Species , Rhodamines , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Reactive Nitrogen Species/analysis , Humans , Reactive Oxygen Species/metabolism , Reactive Oxygen Species/analysis , Optical Imaging , Animals , Sulfur/chemistry , Sulfur/analysisABSTRACT
The bottom-up molecular science research paradigm has greatly propelled the advancement of materials science. However, some organic molecules can exhibit markedly different properties upon aggregation. Understanding the emergence of these properties and structure-property relationship has become a new research hotspot. In this work, by taking the unique closed-form rhodamines-based aggregation-induced emission (AIE) system as model compounds, we investigated their luminescent properties and the underlying mechanism deeply from a top-down viewpoint. Interestingly, the closed-form rhodamine-based AIE system did not display the expected emission behavior under high-viscosity or low-temperature conditions. Alternatively, we finally found that the molecular conformation change upon aggregation induced intramolecular charge transfer emission and played a significant role for the AIE phenomenon of these closed-form rhodamine derivatives. The application of these closed-form rhodamine-based AIE probe in food spoilage detection was also explored.
ABSTRACT
Morphogens are secreted signalling molecules that act in a graded manner to control the pattern of cellular differentiation in developing tissues. An example is Sonic hedgehog (Shh), which acts in several developing vertebrate tissues, including the central nervous system, to provide positional information during embryonic patterning. Here we address how Shh signalling assigns the positional identities of distinct neuronal subtype progenitors throughout the ventral neural tube. Assays of intracellular signal transduction and gene expression indicate that the duration as well as level of signalling is critical for morphogen interpretation. Progenitors of the ventral neuronal subtypes are established sequentially, with progressively more ventral identities requiring correspondingly higher levels and longer periods of Shh signalling. Moreover, cells remain sensitive to changes in Shh signalling for an extended time, reverting to antecedent identities if signalling levels fall below a threshold. Thus, the duration of signalling is important not only for the assignment but also for the refinement and maintenance of positional identity. Together the data suggest a dynamic model for ventral neural tube patterning in which positional information corresponds to the time integral of Shh signalling. This suggests an alternative to conventional models of morphogen action that rely solely on the level of signalling.
Subject(s)
Hedgehog Proteins/physiology , Neural Tube/embryology , Vertebrates/embryology , Animals , Hedgehog Proteins/metabolism , Signal TransductionABSTRACT
Morphogens act in developing tissues to control the spatial arrangement of cellular differentiation. The activity of a morphogen has generally been viewed as a concentration-dependent response to a diffusible signal, but the duration of morphogen signalling can also affect cellular responses. One such example is the morphogen sonic hedgehog (SHH). In the vertebrate central nervous system and limbs, the pattern of cellular differentiation is controlled by both the amount and the time of SHH exposure. How these two parameters are interpreted at a cellular level has been unclear. Here we provide evidence that changing the concentration or duration of SHH has an equivalent effect on intracellular signalling. Chick neural cells convert different concentrations of SHH into time-limited periods of signal transduction, such that signal duration is proportional to SHH concentration. This depends on the gradual desensitization of cells to ongoing SHH exposure, mediated by the SHH-dependent upregulation of patched 1 (PTC1), a ligand-binding inhibitor of SHH signalling. Thus, in addition to its role in shaping the SHH gradient, PTC1 participates cell autonomously in gradient sensing. Together, the data reveal a novel strategy for morphogen interpretation, in which the temporal adaptation of cells to a morphogen integrates the concentration and duration of a signal to control differential gene expression.
Subject(s)
Hedgehog Proteins/metabolism , Signal Transduction , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Chick Embryo , Gene Expression Regulation/drug effects , Hedgehog Proteins/pharmacology , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Tube/cytology , Neural Tube/drug effects , Neural Tube/embryology , Neural Tube/metabolism , Oligodendrocyte Transcription Factor 2 , Oncogene Proteins/metabolism , PAX7 Transcription Factor/metabolism , Patched Receptors , Patched-1 Receptor , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Signal Transduction/drug effects , Time Factors , Trans-Activators/metabolism , Transcription Factors/metabolism , Zebrafish Proteins , Zinc Finger Protein GLI1ABSTRACT
As a global phenomenon, mobile phone addiction has become an increasingly common issue among Chinese university students. Although previous research explored the link between mobile phone addiction and mental health, the possible mechanism underlying the above association is unclear. We administered a cross-sectional survey to 585 participants from two universities in Kunming, southwest China, from October 2021 to January 2022. Our results suggested that mobile phone addiction was negatively associated with mental health, and sleep quality partially mediated the relationship between mobile phone addiction and mental health. Furthermore, perceived social support positively moderated the direct effect of sleep quality on mental health, as well as the indirect effect of mobile phone addiction on mental health. These findings provide a new insight into the underlying mechanism by which mobile phone addiction affects university students' mental health. The results emphasize a necessary task for administrators, health workers, and family members to attach importance to the overuse of mobile phones among university students.
ABSTRACT
Background: Alzheimer's Disease (AD) and Type 2 Diabetes Mellitus (DM) have an increased incidence in modern society. Although more and more evidence has supported that DM is prone to AD, the interrelational mechanisms remain fully elucidated. Purpose: The primary purpose of this study is to explore the shared pathophysiological mechanisms of AD and DM. Methods: Download the expression matrix of AD and DM from the Gene Expression Omnibus (GEO) database with sequence numbers GSE97760 and GSE95849, respectively. The common differentially expressed genes (DEGs) were identified by limma package analysis. Then we analyzed the six kinds of module analysis: gene functional annotation, protein-protein interaction (PPI) network, potential drug screening, immune cell infiltration, hub genes identification and validation, and prediction of transcription factors (TFs). Results: The subsequent analyses included 339 common DEGs, and the importance of immunity, hormone, cytokines, neurotransmitters, and insulin in these diseases was underscored by functional analysis. In addition, serotonergic synapse, ovarian steroidogenesis, estrogen signaling pathway, and regulation of lipolysis are closely related to both. DEGs were input into the CMap database to screen small molecule compounds with the potential to reverse AD and DM pathological functions. L-690488, exemestane, and BMS-345541 ranked top three among the screened small molecule compounds. Finally, 10 essential hub genes were identified using cytoHubba, including PTGS2, RAB10, LRRK2, SOS1, EEA1, NF1, RAB14, ADCY5, RAPGEF3, and PRKACG. For the characteristic Aß and Tau pathology of AD, RAPGEF3 was associated significantly positively with AD and NF1 significantly negatively with AD. In addition, we also found ADCY5 and NF1 significant correlations with DM phenotypes. Other datasets verified that NF1, RAB14, ADCY5, and RAPGEF3 could be used as key markers of DM complicated with AD. Meanwhile, the immune cell infiltration score reflects the different cellular immune microenvironments of the two diseases. Conclusion: The common pathogenesis of AD and DM was revealed in our research. These common pathways and hub genes directions for further exploration of the pathogenesis or treatment of these two diseases.
ABSTRACT
Salicylic acid (SA) is one of the chemical molecules, involved in plant growth and immunity, thereby contributing to the control of pests and pathogens, and even applied in fruit and vegetable preservation. However, only a few tools have ever been designed or executed to understand the physiological processes induced by SA or its function in plant immunity and residue detection in food. Hence, three Rh6G-based fluorogenic chemosensors were synthesized to detect phytohormone SA based on the "OFF-ON" mechanism. The probes showed high selectivity, ultrafast response time (<60 s), and nanomolar detection limit for SA. Moreover, the probe possessed outstanding profiling that can be successfully used for SA imaging of callus and plants. Furthermore, the fluorescence pattern indicated that SA could occur in the distal transport in plants. These remarkable results contribute to improving our understanding of the multiple physiological and pathological processes involved in SA for plant disease diagnosis and for the development of immune activators. In addition, SA detection in some agricultural products used probes to extend the practical application because its use is prohibited in some countries and is harmful to SA-sensitized persons. Interestingly, the as-obtained test paper displayed that SA could be imaged by ultraviolet (UV) and was directly visible to the naked eye. Given the above outcomes, these probes could be used to monitor SA in vitro and in vivo, including, but not limited to, plant biology, food residue detection, and sewage detection.
Subject(s)
Plant Growth Regulators , Salicylic Acid , Salicylic Acid/chemistry , Salicylic Acid/pharmacology , Plant Growth Regulators/chemistryABSTRACT
Metformin (MET) is the first-line therapeutic option for patients with type 2 diabetes that has garnered substantial attention over recent years. However, an insufficient number of studies have been performed to assess its effects on insulin resistance and the expression profile of long noncoding RNAs (lncRNAs). The present study divided mice into three groups: Control group, high-fat diet (HFD) group and HFD + MET group. A high-throughput sequencing analysis was conducted to detect lncRNA and mRNA expression levels, and differentially expressed lncRNAs were selected. Subsequently, the differentially expressed lncRNAs were validated both in vivo and in vitro (mouse liver AML12 cells treated with Palmitic acid) models of insulin resistance. After validating randomly selected lncRNAs via reverse transcription-quantitative PCR a novel lncRNA, NONMMUT031874.2, was identified, which was upregulated in the HFD group and reversed with MET treatment. To investigate the downstream mechanism of NONMMUT031874.2, lncRNA-microRNA (miR/miRNA)-mRNA co-expression network was constructed and NONCODE, miRBase and TargetScan databases were used, which indicated that NONMMUT031874.2 may regulate suppressor of cytokine signaling 3 by miR-7054-5p. For the in vitro part of the present study, AML12 cells were transfected with small interfering RNA to knock down NONMMUT031874.2 expression before being treated with palmitic acid (PA) and MET. The results showed that the expression of NONMMUT031874.2 was significantly increased whereas miR-7054-5p expression was significantly decreased by PA treatment. By contrast, after knocking down NONMMUT031874.2 expression or treatment with MET, the aforementioned in vitro observations were reversed. In addition, it was also found that NONMMUT031874.2 knockdown and treatment with MET exerted similar effects in alleviating insulin resistance and whilst decreasing glucose concentration in AML12 cells. These results suggest that MET treatment can ameliorate insulin resistance by downregulating NONMMUT031874.2 expression.