Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Biomacromolecules ; 25(3): 1923-1932, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38394470

ABSTRACT

Fatty acid cellulose esters (FACE) are common cellulose-based thermoplastics, and their thermoplasticity is determined by both the contents and the lengths of the side chains. Herein, various FACE were synthesized by the ball-milling esterification of cellulose and fatty acyl chlorides containing 10-18 carbons, and their structures and thermoplasticity were thoroughly studied. The results showed that FACE with high degrees of substitution (DS) and low melting flow temperatures (Tf) were achieved as the chain lengths of the fatty acyl chlorides were reduced. In particular, a cellulose decanoate with a DS of 1.85 and a Tf of 186 °C was achieved by feeding 3 mol of decanoyl chloride per mole anhydroglucose units of cellulose. However, cellulose stearate (DS = 1.53) synthesized by the same protocols cannot melt even at 250 °C. More interestingly, the fatty acyl chlorides with 10 and 12 carbons resulted in FACE with superior toughness (elongation at break up to 94.4%). In contrast, due to their potential crystallization of the fatty acyl groups with 14-18 carbons, the corresponding FACE showed higher tensile strength and Young's modulus than the others. This study provides some theoretical basis for the mechanochemical synthesis of thermoplastic FACE with designated properties.


Subject(s)
Chlorides , Esters , Esters/chemistry , Feasibility Studies , Esterification , Cellulose/chemistry
2.
Small ; 18(7): e2103734, 2022 02.
Article in English | MEDLINE | ID: mdl-34825473

ABSTRACT

Multiresponsive flexile sensors with strain, temperature, humidity, and other sensing abilities serving as real electronic skin (e-skin) have manifested great application potential in flexible electronics, artificial intelligence (AI), and Internet of Things (IoT). Although numerous flexible sensors with sole sensing function have already been reported since the concept of e-skin, that mimics the sensing features of human skin, was proposed about a decade ago, the ones with more sensing capacities as new emergences are urgently demanded. However, highly integrated and highly sensitive flexible sensors with multiresponsive functions are becoming a big thrust for the detection of human body motions, physiological signals (e.g., skin temperature, blood pressure, electrocardiograms (ECG), electromyograms (EMG), sweat, etc.) and environmental stimuli (e.g., light, magnetic field, volatile organic compounds (VOCs)), which are vital to real-time and all-round human health monitoring and management. Herein, this review summarizes the design, manufacturing, and application of multiresponsive flexible sensors and presents the future challenges of fabricating these sensors for the next-generation e-skin and wearable electronics.


Subject(s)
Artificial Intelligence , Wearable Electronic Devices , Electronics , Humans , Humidity , Sweat
3.
Nano Lett ; 21(24): 10516-10524, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34878275

ABSTRACT

Solar water purification is a promising technology with a strong potential for producing fresh water without effluent discharge. For energy-intensive interfacial vapor generation, energy loss to air via heat radiation and convection occurs commonly but is normally ignored, which severely limits the energy efficiency. Therefore, it is necessary to precisely regulate the interfacial thermal energy for interfacial vapor generation. Here, we developed a hierarchically porous radiation-absorbing hydrogel film (hp-RAH) through an in situ gelation strategy and employed this hp-RAH on various existing solar evaporator surfaces. The hydrogel film efficiently absorbs and reutilizes the thermal radiation energy emitted by the photothermal layer and eradicates thermal convection of the photothermal layer into air. In this way, an evaporation efficiency up to 95% is obtained, and the heat radiation and convection losses are reduced from 6.6% to 0.39% under 1 sun. This strategy demonstrates a promising membrane evaporation prototype based on the evaporation surface thermal utilization.


Subject(s)
Sunlight , Water Purification , Hydrogels , Methylgalactosides
4.
Ecotoxicol Environ Saf ; 165: 299-306, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30205332

ABSTRACT

Water purification provides a feasible way to relieve the pressure of water shortage and water pollution which we are facing and adsorption is one of the most effective ways to turn polluted water into clean water. Here, we prepared graphene-tannic acid hydrogel using graphene oxide and tannic acid, a natural green reducer and adsorbent, through one-step hydrothermal method. The composition, structure, and morphology of the compounds were systematically examined. The adsorption of dyes was mainly influenced by the morphology and chemical properties of gel. The addition of tannic acid, a molecule rich in oxygen containing functional groups, changed the surface chemistry of graphene sheets and microstructures of gels, which was beneficial for contaminate adsorption. Compared with reduced graphene oxide hydrogel, the graphene-tannic acid hydrogel showed an outstanding adsorption capacity for organic dye methylene blue, more than 500 mg/g at pH 10 and the maximum adsorption capacity was up to 714 mg/g. After adsorption, ethanol and inorganic acid solution can be used as desorption agent and there was no significant adsorption capacity loss after 5 cycles.


Subject(s)
Coloring Agents/chemistry , Graphite/chemistry , Hydrogels/chemistry , Tannins/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Hydrogels/chemical synthesis , Kinetics , Methylene Blue/chemistry , Water Pollution , Water Purification/methods
5.
Macromol Rapid Commun ; 38(23)2017 Dec.
Article in English | MEDLINE | ID: mdl-29083103

ABSTRACT

This article provides a novel and efficient method of "self-assembly/modification/dispersion" for the preparation of functionalized cellulose nanoparticles (CNPs) based on regenerated cellulose hydrogel (RCH). The process of the preparation of CNPs is simplified greatly, which contributes to broadening the utilization of CNPs. Under the given conditions, cellulose chains self-assemble into nanoparticles, which connect with each other to form strings and walls of nanoparticles inside RCH. Then, RCH acts as the hydrophilic precursor of the preparation of CNPs and is modified by oligo side chains to obtain functionalized RCH with imperfect cellulose II structures. After dispersing the functionalized RCH in dimethyl sulfoxide, individual CNPs are finally isolated from functionalized RCH as a result of the decline of the crystallinity of CNPs. Obtained CNPs possess uniform size and good thermal stability, and also exhibit excellent dispersibility in organic solvents. The particle size of CNPs can be adjusted easily by oligo content and particle size of the self-assembled cellulose nanoparticles in RCH. Prepared CNPs are promising candidates for polymer modification in terms of fillers, and for biomedical fields with respect to drug delivery.


Subject(s)
Cellulose/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Delivery Systems/methods , Hydrophobic and Hydrophilic Interactions
6.
Phys Chem Chem Phys ; 19(27): 17745-17755, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28657105

ABSTRACT

It is widely accepted that the role of the high molecular weight (HMW) component is cooperative in shear-induced crystallization, owing to entanglements among long chains. However, this paper demonstrates that the HMW component has a novel effect on structural evolution during the process of multi-melt multi-injection molding (M3IM), organized as follows. First, the appropriate HDPE system with an incremental concentration of HMW tails was established. Second, the crystalline morphologies and orientation behaviors of the M3IM samples were characterized using a combination of scanning electron microscopy (SEM) and two-dimensional small angle X-ray scattering (2D-SAXS), and these suggested that the amount of shish-kebabs was not monotonically promoted with an increasing content of HMW tails but tended to reduce at a certain value. Third, in order to explain this phenomenon, the special temperature and shear profiles of M3IM were depicted subsequently, and finally the mechanism of hierarchical structure formation with the influence of various amounts of HMW tail chains was discussed, based on the classical rheological viewpoint.

7.
Phys Chem Chem Phys ; 19(20): 12712-12719, 2017 May 24.
Article in English | MEDLINE | ID: mdl-28480937

ABSTRACT

Polypropylene (PP) and five kinds of monodisperse polystyrene (PS) with different terminal relaxation times were used to explore the relationship between the mobility of polymer molecular chains and the coarsening process of immiscible polymer blends with a co-continuous morphology under quiescent melt annealing at different temperatures. The terminal relaxation time of all neat PP and PS was determined by a rheological approach to characterize the mobility of molecular chains. A selective dissolution experiment showed that all PP/PS (50/50) blends maintained a co-continuous structure during the whole annealing process. Significant coarsening behaviors were observed for all PP/PS blends under a scanning electron microscope. A linear time dependence of the size of the PS phase was found in all PP/PS blends and the coarsening phenomenon was more obvious with the decrease of the terminal relaxation time of the PS phase because of the increase of the mobility of the polymer molecular chains. A direct relationship between the phase coarsening rate and the terminal relaxation time of the PS phase was found for the first time and it satisfied the equation . According to this equation, the formulae and k ∝ Mw-1 can be derived, which can provide significant information for the control of the phase coarsening process of immiscible polymer blends with a co-continuous morphology.

8.
Phys Chem Chem Phys ; 20(1): 137-147, 2017 Dec 20.
Article in English | MEDLINE | ID: mdl-29211093

ABSTRACT

The effect of phase coarsening on the evolution of the carbon black (CB) nanoparticle network under quiescent melt annealing and the electrical performance of polypropylene/polystyrene/carbon black (PP/PS/CB) composites with a double percolation structure was investigated. The results showed that when the CB content is low, the coarsening process of PP/PS/CB blends can be divided into two stages. In the first stage, the coarsening rate is fast before the formation of the CB nanoparticle network, and after annealing for a certain time, the evolution of the co-continuous morphology can drive the CB nanoparticles to self-assemble into a complete nanoparticle network. In the second stage, the coarsening rate is slow after the formation of the CB nanoparticle network. When the CB content is high, the CB nanoparticle network can be maintained throughout the whole annealing process, so that the conductivity and morphology of the PP/PS/CB composites are stable. Moreover, the electrical conductivity of the PP/PS/CB composites greatly increases after annealing for a certain time, and a percolation threshold as low as 0.07 vol% can be obtained. These results reveal the relationship between the evolution of the morphology and the conductivity in the conductive polymer composites with a double percolation structure, and provide a more in-depth and comprehensive understanding of the double percolation structure.

9.
Phys Chem Chem Phys ; 18(44): 30452-30461, 2016 Nov 09.
Article in English | MEDLINE | ID: mdl-27781215

ABSTRACT

The formation of a hybrid shish-kebab (HSK) structure with different degrees of lamellar orientations was first observed in the solution crystallization of polyethylene (PE) in the presence of carbon nanofibers (CNFs). In this study, PE crystal lamellae were periodically decorated on the surface of CNFs and were aligned approximately perpendicular to the long axes of the CNFs, forming aligned hybrid shish-kebab nanostructures. More importantly, the fascinating structure was directly formed in all regions of the injection molded bars of HDPE/CNF composites, via a gas-assisted injection molding (GAIM), instead of the shell-core structure. In the GAIM process, an intense shear was imposed onto the melt during the melt second flow and drove PE chains to orient along the axes of the CNFs. Then the entropy penalty for PE chains deposited on the CNF surface was drastically decreased. Although the attractive van der Waals interactions were weak, the oriented PE chains could successfully adsorb on the CNF surface due to the decrease of the entropy penalty, therewith the underlayer coating was formed along the axis based on a two-dimensional mode for early nucleation on the CNF surface. Subsequently, subglobules appeared on the ordered structure, which could be regarded as the crystal nucleus. Finally, the oriented PE chains began to epitaxially grow from the subglobules with a folded-chain shape to decrease the polymer surface energy and grew perpendicular to the CNFs long axis, abiding by the "soft epitaxy" crystallization mechanism regardless of strict lattice matching.

10.
Phys Chem Chem Phys ; 18(20): 14030-9, 2016 05 18.
Article in English | MEDLINE | ID: mdl-27157694

ABSTRACT

A strong shear flow was imposed on the melt of polycarbonate (PC) microfibrils with ß-nucleation agent reinforced isotactic polypropylene (iPP) during the melt second flow process, i.e. gas-assisted injection molding (GAIM). A special shell-core structure was formed in the iPP/PC microfibrils with ß-nucleation agent (PP/PC/ß-NA) composites. A lot of ß-transcrystalline and α-transcrystalline superstructures were observed in the skin and sub-skin regions, whereas ß-spherulite structures were formed in the gas channel region. There is no doubt that the distinct hierarchical structure has great potential to significantly improve the mechanical performance of the composites, and the experimental results verify this. The results of the mechanical performance testing show that the yield strength of the PP/PC/ß-NA composites reached 61.9 MPa, which is 19.7 MPa higher than that of the iPP parts molded by GAIM (G-iPP) (42.2 MPa). The tensile modulus of the PP/PC/ß-NA composites (3.3 GPa) increased by 135%, compared to that of G-iPP (1.4 GPa). The high content of ß-crystals improved the elongation at break of the composites compared to the iPP/PC microfibril (PP/PC) composites; the elongation at break of the PP/PC/ß-NA composites (13%) is over 3 times greater than that of the PP/PC composites (4%).

11.
Soft Matter ; 10(20): 3587-96, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24663286

ABSTRACT

The properties of polymer blends greatly depend on the morphologies formed during processing, and the thermodynamic non-equilibrium nature of most polymer blends makes it important to maintain the morphology stability to ensure the performance stability of structural materials. Herein, the phase coarsening of co-continuous, immiscible polyamide 6 (PA6)-acrylonitrile-butadiene-styrene (ABS) blends in the melt state was studied and the effect of introduction of nano-silica particles on the stability of the phase morphology was examined. It was found that the PA6-ABS (50/50 w) blend maintained the co-continuous morphology but coarsened severely upon annealing at 230 °C. The coarsening process could be divided into two stages: a fast coarsening process at the initial stage of annealing and a second coarsening process with a relatively slow coarsening rate later. The reduction of the coarsening rate can be explained from the reduction of the global curvature of the interface. With the introduction of nano-silica, the composites also showed two stages of coarsening. However, the coarsening rate was significantly decreased and the phase morphology was stabilized. Rheological measurements indicated that a particle network structure was formed when the concentration of nano-silica particles was beyond 2 wt%. The particle network inhibited the movement of molecular chains and thus suppressed the coarsening process.


Subject(s)
Acrylic Resins/chemistry , Butadienes/chemistry , Caprolactam/analogs & derivatives , Polymers/chemistry , Polystyrenes/chemistry , Caprolactam/chemistry , Heating , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Phase Transition , Silicon Dioxide/chemistry
12.
Adv Healthc Mater ; 12(27): e2300713, 2023 10.
Article in English | MEDLINE | ID: mdl-37498795

ABSTRACT

The extracellular matrix microenvironment of bone tissue comprises several physiological cues. Thus, artificial bone substitute materials with a single cue are insufficient to meet the demands for bone defect repair. Regeneration of critical-size bone defects remains challenging in orthopedic surgery. Intrinsic viscoelastic and piezoelectric cues from collagen fibers play crucial roles in accelerating bone regeneration, but scaffolds or implants providing integrated cues have seldom been reported. In this study, it is aimed to design and prepare hierarchically porous poly(methylmethacrylate)/polyethyleneimine/poly(vinylidenefluoride) composite implants presenting a similar viscoelastic and piezoelectric microenvironment to bone tissue via anti-solvent vapor-induced phase separation. The viscoelastic and piezoelectric cues of the composite implants for human bone marrow mesenchymal stem cell line stimulate and activate Piezo1 proteins associated with mechanotransduction signaling pathways. Cortical and spongy bone exhibit excellent regeneration and integration in models of critical-size bone defects on the knee joint and femur in vivo. This study demonstrates that implants with integrated physiological cues are promising artificial bone substitute materials for regenerating critical-size bone defects.


Subject(s)
Bone Substitutes , Tissue Scaffolds , Humans , Osteogenesis , Bone Substitutes/pharmacology , Porosity , Mechanotransduction, Cellular , Bone Regeneration , Tissue Engineering
13.
ACS Appl Mater Interfaces ; 15(47): 54986-54995, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37967332

ABSTRACT

Elastic sponges are ideal materials for triboelectric nanogenerators (TENGs) to harvest irregular and random mechanical energy from the environment. However, the conductive design of the elastic materials in TENGs often limits its applications. In this work, we have demonstrated that an elastic conductive sponge can be used as the triboelectric layer and electrode for TENGs. Such an elastic conductive sponge is prepared by a simple way of adsorbing multiwalled carbon nanotubes and monomers of pyrrole to grow conductive polypyrroles on the surface of an elastic polyurethane (PU) sponge. Due to the porous structure of the PU sponge and the conductive multiwalled carbon nanotubes (MWCNTs), PPy on the surface of PU could provide a large contact area to improve the output performance of TENGs, and the conductive sponge-based TENG could generate an output of open-circuit voltage of 110 V or a short-circuit current of 12 µA, respectively. The good flexibility of the conductive PU sponge makes the TENG harvest the kinetic energy of disordered motion with different amplitudes, allowing for human motion monitoring. Furthermore, the porous structure of PU and the synergistic effects of PPy and MWCNTs enable the conductive sponge to sense NH3 as a self-powered NH3 sensor. This work offers a simple way to construct a flexible TENG system for random mechanical energy harvesting, human motion monitoring, and self-powered NH3 sensing.

14.
ACS Appl Mater Interfaces ; 15(31): 37563-37570, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37498012

ABSTRACT

Triboelectric nanogenerators have shown great potential in the area of self-powered gas sensors in the past decade. In this paper, we developed a triboelectric nanogenerator (TENG) based on spiky structured ZIF-8@ZnO, which can harvest energy with high efficiency and act as a self-powered methanol sensor. The open-circuit voltage and short-circuit current generated by a ZIF-8@ZnO-based TENG is 58 V and 10 µA, achieving 2.4 times and 3.3 times enhancement compared to ZnO-based TENGs. The TENG can charge capacitors fast and light up at least 40 LEDs. ZIF-8@ZnO-based TENGs show good sensitivity and selectivity to methanol gas at room temperature due to the porous structure provided by ZIF-8 and the heterostructure of ZIF-8@ZnO. The response of ZIF-8@ZnO-based TENG to methanol reaches 30.35% at 100 ppm with excellent response (∼5.9 s) and recovery time (∼2.2 s). This work demonstrates the application of MOF-modified metal oxide semiconductors based on a self-powered gas sensor and proposes a promising solution to enhance the output performance and sensing properties of TENGs based on metal oxide semiconductors.

15.
Adv Sci (Weinh) ; 9(33): e2204187, 2022 11.
Article in English | MEDLINE | ID: mdl-36216571

ABSTRACT

Solar interfacial vapor generation based on low evaporation energy requirements is an effective technology to speed up water purification under natural sunlight, offering great potential to alleviate the current global water crisis. The external electric field and hydrogel are two independent methods enabling low-energy water evaporation. However, the complicated external equipment for generating an electric field and the restricted activation area of hydrogels significantly limit their practical application in steam generation. Thus, a piezoelectric fiber membrane is embedded into a highly hydratable light-absorbing poly(vinyl alcohol) (PVA) hydrogel for synergistic water activation. The integrated evaporator is capable of continuously converting the wave energy reserved in the ocean into electrical energy, activating the water in the hydrogel. It is found that the activation effect leads to an improvement of over 23% compared to a non-piezoelectric hydrogel evaporator. This work provides an evaporation prototype based on the synergistic water activation of wave-triggered electricity and highly hydratable hydrogel.


Subject(s)
Hydrogels , Steam , Polyvinyl Alcohol , Water , Motion Pictures
16.
ACS Appl Mater Interfaces ; 14(40): 45966-45977, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36166428

ABSTRACT

Because of its rather low melt strength, polylactide (PLA) has yet to fulfill its promise as advanced biobased and biodegradable foams to replace fossil-based polymer foams. In this work, PLA vitrimers were prepared by two-step reactive processing from commercial PLA thermoplastics, glycerol, and diphenylmethane diisocyanate (MDI) using Zn(II)-catalyzed addition and transesterification chemistry. The transesterification reaction of PLA and glycerol occurs with zinc acetate as the catalyst, and chain scission will take place due to the alcoholysis of the PLA chains by the free hydroxyl groups from the glycerol. Long-chain PLA with hydroxyl groups can be obtained and then cross-linked with MDI. Rheological analysis shows that the formed cross-linked network can significantly improve melt strength and promote strain hardening under extensional flow. PLA vitrimers still maintain the ability of thermoplastic processing via extrusion and compression. The enhanced melt strength and the rearrangement of network topology facilitate the foaming processing. An expansion ratio as large as 49.2-fold and microcellular foam with a uniform cell morphology can be obtained for PLA vitrimers with a gel fraction of 51.8% through a supercritical carbon dioxide foaming technique. This work provides a new way with the scale-up possibility to enhance the melt strength of PLA, and the broadened range of PLA applicability brought by PLA vitrimers is truly valuable in terms of the realization of a sustainable society.

17.
J Colloid Interface Sci ; 618: 399-410, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35358805

ABSTRACT

This work demonstrates a hierarchical structure design with mixed holey graphene oxide (HGO) and Ni(OH)2 active material layer made by one-pot hydrothermal reaction clinging to Nickel foam as backbone and ice-template oriented graphene oxide (GO) aerogel as filling, aiming to create an asymmetric solid supercapacitor (ASC) device with compliable flexibility and high electrochemical performance. The effects of hydrothermal treatment and ice-template freezing parameters on electrochemical stability under repeated exterior deformation are discussed, the optimal parameters result in a high areal capacitance of 479.8 mF/cm2 in asymmetric supercapacitor device setup. The use of porous HGO and oriented GO aerogel synergistically contribute to the high energy and power density up to 1.69 Wh/m2 and 9 W/m2 as well as excellent electrochemical performance retention under repeated curving deformation which reaches 102% thanks to a novel activation process. The electrode assembly including metal foam and the buffering GO aerogel should be instructive for future supercapacitor design.

18.
ACS Nano ; 16(10): 16806-16815, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36194701

ABSTRACT

Wearable strain sensors have huge potential for applications in healthcare, human-machine interfacing, and augmented reality systems. However, the nonlinear response of the resistance signal to strain has caused considerable difficulty and complexity in data processing and signal transformation, thus impeding their practical applications severely. Herein, we propose a simple way to achieve linear and reproducible resistive signals responding to strain in a relatively wide strain range for flexible strain sensors, which is achieved via the fabrication of Janus and heteromodulus elastomeric fiber mats with micropatterns using microimprinting second processing technology. In detail, both isotropic and anisotropic fiber mats can turn into Janus fiber mats with periodical and heteromodulus micropatterns via controlling the fiber fusion and the diffusion of local macromolecular chains of thermoplastic elastomers. The Janus heterogeneous microstructure allows for stress redistribution upon stretching, thus leading to lower strain hysteresis and improved linearity of resistive signal. Moreover, tunable sensing performance can be achieved by tailoring the size of the micropatterns on the fiber mat surface and the fiber anisotropy. The Janus mat strain sensors with high signal linearity and good reproducibility have a very low strain detection limit, enabling potential applications in human-machine interfacing and intelligent control fields if combined with a wireless communication module.


Subject(s)
Wearable Electronic Devices , Humans , Reproducibility of Results , Elastomers , Elasticity
19.
ACS Appl Mater Interfaces ; 14(19): 22521-22530, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35522609

ABSTRACT

Soft actuators with integrated mechanical and actuation properties and self-sensing ability are still a challenge. Herein, a stiffness variable polyolefin elastomer (POE) with a reversible shape memory effect is prepared by introducing a typical phase change material, i.e., paraffin wax (PW). It is found that the variable stiffness of POE induced by PW can balance the reversible strain and load-bearing capability of actuators. Especially, carbon nanotubes (CNTs) are concentrated in a thin surface layer by spraying and hot pressing in the soft state of POE/PW blends, providing signal transductions for the strain and temperature perception for actuators. Taking advantage of tunable reversible deformation and mechanical transformation of the POE/PW actuator, different biomimetic robotics, including grippers with high load-bearing capability (weight-lifting ratio > 146), walking robots that can sense angles of joints, and high-temperature warning robots are demonstrated. A scheme combining the variable stiffness and electrical properties provides a versatile strategy to integrate actuation performance and self-sensing ability, inspiring the development of multifunctional composite designs for soft robotics.

20.
ACS Appl Mater Interfaces ; 14(13): 15678-15686, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35321545

ABSTRACT

Elastomer fiber mat sensors, which are capable of perceiving mechanical stimuli, temperature, and vapor of chemicals, are highly desirable for designing wearable electronics and human-robot interfacing devices due to good wearability, skin affinity, and durability, and so on. However, it is still challenging to fabricate multiresponsive flexible wearable sensors with three-dimensional (3D) architecture using simple material and structure design. Herein, we report an all-in-one multiresponsive thermoplastic polyurethane (TPU) nanofiber mat sensors composed of crimped elastomer fibers with deposited platinum nanoparticles (PtNPs) on the fiber surface. The 1D TPU nanofibers could be transferred to nanofibers with different 3D nanofiber architectures by controllable macromolecular chain relaxation of aligned elastomer polymers upon poor solvent annealing. The conductive networks of PtNPs on wavy TPU fibers enable the sensor susceptible to multiple stimuli like strain/pressure, humidity, and organic vapors. Besides, the 3D nanofiber architectures allow the strain sensor to detect wider tensile strain and pressure with higher sensitivity due to delicate fiber morphology and structure control. Therefore, this work provides new insights into the fabrication of multifunctional flexible sensors with 3D architecture in an easy way, advancing the establishment of a multiple signal monitoring platform for the health care and human-machine interfacing.


Subject(s)
Metal Nanoparticles , Nanofibers , Wearable Electronic Devices , Electric Conductivity , Humans , Nanofibers/chemistry , Platinum
SELECTION OF CITATIONS
SEARCH DETAIL