Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
BMC Genomics ; 25(1): 420, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684985

ABSTRACT

Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selection shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environmental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, including biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat genome and have practical implications for marker-assisted breeding in goats.


Subject(s)
Climate , Genomics , Goats , Polymorphism, Single Nucleotide , Selection, Genetic , Animals , Goats/genetics , Goats/physiology , Genomics/methods , Adaptation, Physiological/genetics , Breeding , Haplotypes
2.
Small ; 19(16): e2207487, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36693783

ABSTRACT

Benefiting from the proton's small size and ultrahigh mobility in water, aqueous proton batteries are regarded as an attractive candidate for high-power and ultralow-temperature energy storage devices. Herein, a new-type C4 N polymer with uniform micropores and a large specific surface area is prepared by sulfuric acid-catalyzed ketone amine condensation reaction and employed as the electrode of proton batteries. Multi-walled carbon nanotubes (MWCNT) are introduced to induce the in situ growth of C4 N, and reaped significantly enhanced porosity and conductivity, and thus better both room- and low-temperature performance. When coupled with MnO2 @Carbon fiber (MnO2 @CF) cathode, MnO2 @CF//C4 N-50% MWCNT full battery shows unprecedented cycle stability with a capacity retention of 98% after 11 000 cycles at 10 A g-1 and even 100% after 70 000 cycles at 20 A g-1 . Additionally, a novel anti-freezing electrolyte (5 m H2 SO4  + 0.5 m MnSO4 ) is developed and showed a high ionic conductivity of 123.2 mS cm-1 at -70 °C. The resultant MnO2 @CF//C4 N-50% MWCNT battery delivers a specific capacity of 110.5 mAh g-1 even at -70 °C at 1 A g-1 , the highest in all reported proton batteries under the same conditions. This work is expected to offer a package solution for constructing high-performance ultralow-temperature aqueous proton batteries.

3.
Langmuir ; 38(7): 2287-2293, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35148111

ABSTRACT

Carbon dots (CDs) with long-lived room-temperature phosphorescence (RTP) or long afterglow properties draw much attention. However, most room-temperature phosphorescent materials are metal containing, and the exploitation of long-lived color-tunable RTP materials faces great challenges. Here, we report metal-free boron-doped CDs (B-CDs) for room-temperature phosphorescence with tunable color and an ultralong lifetime. B-CDs were obtained by simply calcining a mixture of boric acid and 1,3,5-benzenetricarboxylic acid in the atmosphere. The as-prepared B-CDs were characterized through UV-vis spectroscopy, photoluminescence spectroscopy, and so forth. Under the excitation of 310 nm UV light, B-CDs show RTP that appears as blue with a phosphorescence lifetime of 1042 ms, and after switching the excited wavelength to 365 nm, the RTP appears as green with a phosphorescence lifetime of 590 ms. Due to the unique RTP properties, B-CDs display promising applications in anticounterfeiting and information encryption.

4.
BMC Genomics ; 22(1): 755, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34674653

ABSTRACT

BACKGROUND: Mitochondrial genomes (mitogenomes) have greatly improved our understanding of the backbone phylogeny of Lepidoptera, but few studies on comparative mitogenomics below the family level have been conducted. Here, we generated 13 mitogenomes of eight tortricid species, reannotated 27 previously reported mitogenomes, and systematically performed a comparative analysis of nucleotide composition, gene variation and phylogenetic performance. RESULTS: The lengths of completely sequenced mitogenomes ranged from 15,440 bp to 15,778 bp, and the gene content and organization were conserved in Tortricidae and typical for Lepidoptera. Analyses of AT-skew and GC-skew, the effective number of codons and the codon bias index all show a base bias in Tortricidae, with little heterogeneity among the major tortricid groups. Variations in the divergence rates among 13 protein-coding genes of the same tortricid subgroup and of the same PCG among tortricid subgroups were detected. The secondary structures of 22 transfer RNA genes and two ribosomal RNA genes were predicted and comparatively illustrated, showing evolutionary heterogeneity among different RNAs or different regions of the same RNA. The phylogenetic uncertainty of Enarmoniini in Tortricidae was confirmed. The synonymy of Bactrini and Olethreutini was confirmed for the first time, with the representative Bactrini consistently nesting in the Olethreutini clade. Nad6 exhibits the highest phylogenetic informativeness from the root to the tip of the resulting tree, and the combination of the third coding positions of 13 protein-coding genes shows extremely high phylogenetic informativeness. CONCLUSIONS: This study presents 13 mitogenomes of eight tortricid species and represents the first detailed comparative mitogenomics study of Tortricidae. The results further our understanding of the evolutionary architectures of tortricid mitogenomes and provide a basis for future studies of population genetics and phylogenetic investigations in this group.


Subject(s)
Genome, Mitochondrial , Moths , Animals , Moths/genetics , Nucleotides/genetics , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics
5.
Zootaxa ; 3985(1): 125-41, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26250027

ABSTRACT

The tribe Satyrini is one of the most diverse groups of butterflies, but no robust phylogenetic hypothesis for this group has been achieved. Two rarely used 16s and 28s ribosomal and another seven protein-coding genes were used to reconstruct the phylogeny of the Satyrini, with further aim to evaluate the informativeness of the ribosomal genes. Our maximum parsimony (MP), maximum likelihood (ML) and Bayesian inference (BI) analyses consistently recovered three well-supported clades for the eleven sampled subtribes of Satyrini: clade I includes Eritina and Coenonymphina, being sister to the clade II + clade III; clade II contains Parargina, Mycalesina and Lethina, and the other six subtribes constitute clade III. The placements of the taxonomically unstable Davidina Oberthür and geographically restricted Paroeneis Moore in Satyrina are confirmed for the first time based on molecular evidence. The close relationships of Callerebia Butler, Loxerebia Watkins and Argestina Riley are well-supported. We suggest that Rhaphicera Butler belongs to Lethina. The partitioned Bremer support (PBS) values of MP analysis show that the 16s rDNA contributes well to the nodes representing all the taxa from subtribe to species levels, and the 28s rDNA is informative at the subtribe level. Furthermore, our ML analyses show that the ribosomal genes 16s rDNA and 28s rDNA are informative, because most node support values are lower in the ML tree after the removal of them than that in ML tree constructed based on the full nine-gene dataset. This indicates that some other ribosomal genes should be tentatively used through combining with traditionally used protein-coding genes in further analysis on phylogeny of Satyrini, providing that proper representatives are sampled.


Subject(s)
Butterflies/classification , Butterflies/genetics , DNA, Mitochondrial/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 28S/genetics , Animal Distribution , Animals , Butterflies/anatomy & histology , Butterflies/growth & development , DNA, Ribosomal/genetics , Insect Proteins/genetics
6.
Toxicol In Vitro ; 95: 105742, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38016509

ABSTRACT

Phthalates are commonly used as plasticizers. Numerous studies have focused on endocrine, reproductive, and developmental toxicity of phthalates exposure to male organisms. In recent years, some studies looking into the aging effects of phthalates exposure in D. melanogaster showed discrepant results. In this study, we compared the different concentrations of Di(2-ethylhexyl) phthalate (DEHP) and di-isononyl phthalate (DINP) for acute and chronic treatment for different gender D. melanogaster and explored the potential mechanism of DEHP and DINP exposure. The results showed that acute exposure to DEHP or DINP at a high dose significantly decreased the lifespan of female and male D. melanogaster under HFD stress. Chronic exposure significantly decreased the lifespan of flies in all exposure groups except for the low-dose DINP exposure female group. Among them, in the normal feeding group, we found that female flies seemed to be more resistant to DEHP or DINP exposure. Meanwhile, the locomotion ability and fertility of flies exhibited a dose-dependent decline. Furthermore, phthalates did not significantly reduce the lifespan or health status of akt and foxo mutant flies in the mutant fly assays, and real-time quantitative-PCR (q-PCR) data revealed akt and foxo significant change with 10 µM DEHP or DINP treatment. This suggests that akt and foxo played a role in the process by which DEHP and DINP caused age-related declines in D. melanogaster.


Subject(s)
Diethylhexyl Phthalate , Drosophila Proteins , Phthalic Acids , Animals , Male , Female , Diethylhexyl Phthalate/toxicity , Drosophila melanogaster , Proto-Oncogene Proteins c-akt/genetics , Phthalic Acids/toxicity , Plasticizers/toxicity , Aging , Drosophila Proteins/genetics , Forkhead Transcription Factors/genetics
7.
Insects ; 15(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39057242

ABSTRACT

Sugar transporters play important roles in controlling carbohydrate transport and are responsible for mediating the movement of sugars into cells in numerous organisms. In insects, sugar transporters not only play a role in sugar transport but may also act as receptors for virus entry and the accumulation of plant defense compounds. The brown planthopper, Nilaparvata lugens, inflicts damage on rice plants by feeding on their phloem sap, which is rich in sugars. In the present study, we identified 34 sugar transporters in N. lugens, which were classified into three subfamilies based on phylogenetic analysis. The motif numbers varied from seven to eleven, and motifs 2, 3, and 4 were identified in the functional domains of all 34 NlST proteins. Chromosome 1 was found to possess the highest number of NlST genes, harboring 15. The gut, salivary glands, fat body, and ovary were the different tissues enriched with NlST gene expression. The expression levels of NlST2, 3, 4, 7, 20, 27, 28, and 31 were higher in the gut than in the other tissues. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST4 (previously characterized) and NlST4, 28, and 31 were found to transport glucose and fructose, resulting in functional rescue of the yeast mutant. These results provide valuable data for further studies on sugar transporters in N. lugens and lay a foundation for finding potential targets to control N. lugens.

8.
Adv Mater ; 36(26): e2403489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38556648

ABSTRACT

Rechargeable aqueous proton batteries with small organic molecule anodes are currently considered promising candidates for large-scale energy storage due to their low cost, stable safety, and environmental friendliness. However, the practical application is limited by the poor cycling stability caused by the shuttling of soluble organic molecules between electrodes. Herein, a cell separator is modified by a GO-casein-Cu2+ layer with a brick-and-mortar structure to inhibit the shuttling of small organic molecules. Experimental and calculation results indicate that, attributed to the synergistic effect of physical blocking of casein molecular chains and electrostatic and coordination interactions of Cu2+, bulk dissolution and shuttling of multiple small molecules can be inhibited simultaneously, while H+ transfer across the separators is not almost affected. With the protection of the GO-casein-Cu2+ separator, soluble small molecules, such as diquinoxalino[2,3-a:2',3'-c]phenazine,2,3,8,9,14,15-hexacyano (6CN-DQPZ) exhibit a high reversible capacity of 262.6 mA h g-1 and amazing stability (capacity retention of 92.9% after 1000 cycles at 1 A g-1). In addition, this strategy is also proved available to other active conjugated small molecules, such as indanthrone (IDT), providing a general green sustainable strategy for advancing the use of small organic molecule electrodes in proton cells.

9.
Natl Sci Rev ; 11(4): nwae045, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545446

ABSTRACT

Organic materials with rich active sites are good candidates of high-capacity anodes in aqueous batteries, but commonly low utilization of active sites limits their capacity. Herein, two isomers, symmetric and asymmetric hexaazatribenzanthraquinone (s-HATBAQ and a-HATBAQ), with rich active sites have been synthesized in a controllable manner. It has been revealed for the first time that a sulfuric acid catalyst can facilitate the stereoselective formation of s-HATBAQ. Attributed to the reduced steric hindrance in favor of proton insertion as well as the amorphous structure conducive to electrochemical dynamics, s-HATBAQ exhibits 1.5 times larger specific capacity than a-HATBAQ. Consequently, the electrode of s-HATBAQ with 50% reduced graphene oxide (s-HATBAQ-50%rGO) delivers a record high specific capacity of 405 mAh g-1 in H2SO4 electrolyte. Moreover, the assembled MnO2//s-HATBAQ-50%rGO aqueous proton full batteries show an exceptional cycling stability at 25°C and can maintain ∼92% capacity after 1000 cycles at 0.5 A g-1 at -80°C. This work demonstrates the controllable synthesis of isomers, showcases a wide-temperature-range prototype proton battery and highlights the significance of precise molecular structure modulation in organic energy storage.

10.
Zootaxa ; 3731: 113-32, 2013 Oct 29.
Article in English | MEDLINE | ID: mdl-25277557

ABSTRACT

A total of 54 cacada species, belonging to 28 genera, nine tribes and three subfamilies of the family Cicadidae, are identified to comprise the cicada fauna of Hainan Island, based on the examination of material collected between 2007 and 2011. One species, Semia hainanensis sp. n., is described as new to science. Nine species are recorded as new to Hainan Island, of which two species, Pomponia subtilita Lee, 2009 and Becquartina bleuzeni Boulard, 2005, are reported for the first time from China. In addition, six species formerly recorded from Hainan are removed from the list of Hainan cicadas. Taxonomic remarks and information on geographic distributions are also provided.


Subject(s)
Hemiptera/anatomy & histology , Hemiptera/classification , Animals , China , Demography , Female , Hemiptera/physiology , Male , Species Specificity
11.
Aging (Albany NY) ; 15(7): 2667-2688, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37036471

ABSTRACT

BACKGROUND: Immunogenic cell death (ICD) is a form of regulated cell death (RCD) which could drive the activation of the innate and adaptive immune responses. In this work, we aimed to develop an ICD-related signature to facilitate the assessment of prognosis and immunotherapy response for melanoma patients. METHODS: A set of machine learning methods, including consensus clustering, non-negative matrix factorization (NMF) method and least absolute shrinkage and selection operator (LASSO) logistic regression model, and bioinformatics analytic tools were integrated to construct an ICD-related risk score (ICDscore). CIBERSORT and ESTIMATE algorithm were used to evaluate the infiltration of immune cells. The 'pRRophetic' package in R and 6 cohorts of melanoma patients receiving immunotherapy were used for therapy sensitivity analyses. The predictive performance between ICDscore with other mRNA signatures were also compared. RESULTS: The ICDscore could predict prognosis and immunotherapy response in multiple cohorts, and displayed superior performance than other forms of cell death-related signatures or 52 published signatures. The melanoma patients with low ICDscore were marked with high infiltration of immune cells, high expression of immune checkpoint inhibitor-related genes, and increased tumor mutation burden. CONCLUSIONS: In conclusion, we constructed a stable and robust ICD-related signature for evaluating the prognosis and benefits of immunotherapy, and it could serve as a promising tool to guide decision-making and surveillance for individual melanoma patients.


Subject(s)
Immunogenic Cell Death , Melanoma , Humans , Melanoma/therapy , Prognosis , Immunotherapy , Machine Learning , Tumor Microenvironment
12.
Ecol Evol ; 13(2): e9813, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36789341

ABSTRACT

The Geometroidea is a large superfamily of Lepidoptera in species composition and contains numerous economically important pest species that cause great loss in crop and forest production. However, understanding of mitogenomes remains limited due to relatively fewer mitogenomes previously reported for this megadiverse group. Here, we sequenced and annotated nine mitogenomes for Geometridae and further analyzed the mitogenomic evolution and phylogeny of the whole superfamily. All nine mitogenomes contained 37 mitochondrial genes typical in insects, and gene organization was conserved except for Somatina indicataria. In S. indicataria, the positions of two tRNAs were rearranged. The trnR was located before trnA instead of after trnA typical in Lepidoptera, whereas the trnE was detected rarely on the minority strand (N-strand). This trnR-trnA-trnN-trnS1-trnE-trnF newly recognized in S. indicataria represents the first gene rearrangement reported for Geometroidea and is also unique in Lepidoptera. Besides, nucleotide composition analyses showed little heterogeneity among the four geometrid subfamilies involved herein, and overall, nad6 and atp8 have higher nucleotide diversity and Ka/Ks rate in Geometridae. In addition, the taxonomic assignments of the nine species, historically defined by morphological studies, were confirmed by various phylogenetic analyses based on the hitherto most extensive mitogenomic sampling in Geometroidea.

13.
ACS Appl Mater Interfaces ; 15(18): 22051-22064, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37104816

ABSTRACT

Recently, carbon nitrides and their carbon-based derivatives have been widely studied as anode materials of lithium-ion batteries due to their graphite-like structure and abundant nitrogen active sites. In this paper, a layered carbon nitride material C3N3 consisting of triazine rings with an ultrahigh theoretical specific capacity was designed and synthesized by an innovative method based on Fe powder-catalyzed carbon-carbon coupling polymerization of cyanuric chloride at 260 °C, with reference to the Ullmann reaction. The structural characterizations indicated that the as-synthesized material had a C/N ratio close to 1:1 and a layered structure and only contained one type of nitrogen, suggesting the successful synthesis of C3N3. When used as a lithium-ion battery anode, the C3N3 material showed a high reversible specific capacity up to 842.39 mAh g-1 at 0.1 A g-1, good rate capability, and excellent cycling stability attributed to abundant pyridine nitrogen active sites, large specific surface area, and good structure stability. Ex situ XPS results indicated that Li+ storage relies on the reversible transformation of -C=N- and -C-N- groups as well as the formation of bridge-connected -C=C- bonds. To further optimize the performance, the reaction temperature was further increased to synthesize a series of C3N3 derivatives for the enhanced specific surface area and conductivity. The resulting derivative prepared at 550 °C showed the best electrochemical performance, with an initial specific capacity close to 900 mAh g-1 at 0.1 A g-1 and good cycling stability (94.3% capacity retention after 500 cycles at 1 A g-1). This work will undoubtedly inspire the further study of high-capacity carbon nitride-based electrode materials for energy storage.

14.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 2): o279, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22346921

ABSTRACT

In the title compound, C(14)H(10)N(6)O(2)S, the dihedral angle between the pyridine and triazole rings is 3.21 (10)°. The mol-ecule is significantly twisted about the N(t)-N(b) (t = triazole and b = benzyl-idene) bond [C-N(t)-N(b)=C = 151.64 (17)°]. In the crystal, mol-ecules are linked by weak N-H⋯N hydrogen bonds, generating C(8) chains propagating in [10[Formula: see text]].

15.
Pest Manag Sci ; 78(10): 4340-4352, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35754391

ABSTRACT

BACKGROUND: The bean bug, Riptortus pedestris, has received intense attention in recent years because of its involvement in increasing outbreaks of staygreen syndrome in soybean (Glycine max (L.)), often causing almost 100% loss of soybean yield in China. However, for this pest of great economic importance, potential current and future distribution patterns and their underlying driving factors remain unclear. RESULTS: Maxent modelling under climate, elevation and land-use (including the distribution information of G. max) variables showed that the current potential distribution covered a vast geographic range, primarily including most parts of south, South East and east Asia. Under future environmental scenarios, suitable habitat expanded markedly. Areas that would become highly suitable for R. pedestris were primarily located in north-east China and west India. Five bioclimatic (BIO13, BIO08, BIO18, BIO02 and BIO07) and one land-use (C3 annual crops) predictors contributed approximately 95% to the modelling, and analyses of curve responses showed that to a certain extent, R. pedestris preferred relatively high temperature and precipitation. Our results indicate that a high risk of R. pedestris outbreaks is present in parts of Asia, especially in the soybean-growing regions of China, and this risk will continue in the future. CONCLUSION: The predicted distribution pattern and key regulating factors identified herein could provide a vital reference for developing pest management policies and further alleviate the incidence of staygreen syndrome in soybean. © 2022 Society of Chemical Industry.


Subject(s)
Glycine max , Heteroptera , Animals , China , Ecosystem , Asia, Eastern , Heteroptera/physiology
16.
J Econ Entomol ; 115(6): 2083-2091, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36256384

ABSTRACT

The soybean aphid Aphis glycines Matsumura is a predominant insect pest in Asia and North America and causes great losses to soybean. The release of genome data for A. glycines will facilitate gene function research in the future. However, suitable reference genes for A. glycines under various experimental conditions are scarce. To search for appropriate reference genes for A. glycines, nine candidate reference genes, including Act, α-Tub, ß-Tub, RPS12, RPS18, RPL5, RPL27, EF1α, and Fer, were tested under six experimental conditions to evaluate their suitability for use in the normalization of qRT‒PCR data. Results showed that EF1α and RPS12 were optimal for the developmental stages of A. glycines, RPS18 and RPS12 were appropriate for wing dimorphism, ß-Tub and RPS18 were suitable for different tissues and RPL5, and α-Tub could be used for normalization at different temperatures. ß-Tub and EF1α could be proposed as reference genes for insecticide treatment, and RPL5 and RPS12 were found to be the most stable reference genes in different photoperiods. The results provide appropriate reference genes for analyzing gene expression in A. glycines and contribute to future research on the molecular physiology and biochemistry of A. glycines.


Subject(s)
Aphids , Insecticides , Animals , Aphids/physiology , Glycine max/genetics , Insecta/genetics , Insecticides/metabolism , Polymerase Chain Reaction
17.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 11): m1502, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22219753

ABSTRACT

The title compound, [Fe(2)(C(3)H(6)S(2))(C(18)H(15)P)(2)(CO)(4)], which might serve as an active-site model of [FeFe]-hydrogenase, contains two fused Fe/S/C/C/C/S six-membered rings, one of which has a chair conformation and the other a boat conformation. Each Fe atom is coordinated by two carbonyl ligands, a triphenyl-phosphane ligand and a bis-bidentate dithiol-ate ligand, and also forms an Fe-Fe bond [2.5167 (16) Å]. Together, the six bonded atoms form a very distorted octa-hedral arrangement.

18.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 11): m1571, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22219808

ABSTRACT

In the title solvated complex, [NiCl(2)(C(31)H(27)NP(2))]·CH(2)Cl(2), the Ni(2+) ion is coordinated by two chloride ions and two P atoms of the chelating N,N-bis-(diphenyl-phosphan-yl)benzyl ligand to generate a strongly distorted cis-NiCl(2)P(2) square-planar geometry for the metal ion. In the crystal, the components are linked by C-H⋯Cl inter-actions.

19.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 11): m1572, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22219809

ABSTRACT

In the title complex, [NiCl(2)(C(27)H(27)NP(2))], the Ni(2+) ion is coordinated by two chloride ions and two P atoms of the bidentate N,N-bis-(diphenyl-phosphan-yl)propyl ligand to generate a strongly distorted cis-NiCl(2)P(2) square-planar geometry for the metal ion. A NiP(2)N rhombus occurs within the chelating ligand.

20.
Insects ; 12(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34821839

ABSTRACT

The Pyraloidea is one of the species-rich superfamilies of Lepidoptera and contains numerous economically important pest species that cause great loss in crop production. Here, we sequenced and annotated nine complete mitogenomes for Pyraloidea, and further performed various phylogenetic analyses, to improve our understanding of mitogenomic evolution and phylogeny of this superfamily. The nine mitogenomes were circular, double-stranded molecules, with the lengths ranging from 15,214 bp to 15,422 bp, which are comparable to other reported pyraloid mitogenomes in size. Gene content and arrangement were highly conserved and are typical of Lepidoptera. Based on the hitherto most extensive mitogenomic sampling, our various resulting trees showed generally congruent topologies among pyraloid subfamilies, which are almost in accordance with previous multilocus studies, indicating the suitability of mitogenomes in inferring high-level relationships of Pyraloidea. However, nodes linking subfamilies in the "non-PS clade" were not completely resolved in terms of unstable topologies or low supports, and future investigations are needed with increased taxon sampling and molecular data. Unexpectedly, Orybina Snellen, represented in a molecular phylogenetic investigation for the first time, was robustly placed as basal to the remaining Pyralidae taxa across our analyses, rather than nested in Pyralinae of Pyralidae as morphologically defined. This novel finding highlights the need to reevaluate Orybina monophyly and its phylogenetic position by incorporating additional molecular and morphological evidence.

SELECTION OF CITATIONS
SEARCH DETAIL