Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 239
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Plant J ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38804740

ABSTRACT

Plant stems constitute the most abundant renewable resource on earth. The function of lysine (K)-2-hydroxyisobutyrylation (Khib), a novel post-translational modification (PTM), has not yet been elucidated in plant stem development. Here, by assessing typical pepper genotypes with straight stem (SS) and prostrate stem (PS), we report the first large-scale proteomics analysis for protein Khib to date. Khib-modifications influenced central metabolic processes involved in stem development, such as glycolysis/gluconeogenesis and protein translation. The high Khib level regulated gene expression and protein accumulation associated with cell wall formation in the pepper stem. Specially, we found that CaMYB61 knockdown lines that exhibited prostrate stem phenotypes had high Khib levels. Most histone deacetylases (HDACs, e.g., switch-independent 3 associated polypeptide function related 1, AFR1) potentially function as the "erasing enzymes" involved in reversing Khib level. CaMYB61 positively regulated CaAFR1 expression to erase Khib and promote cellulose and hemicellulose accumulation in the stem. Therefore, we propose a bidirectional regulation hypothesis of "Khib modifications" and "Khib erasing" in stem development, and reveal a novel epigenetic regulatory network in which the CaMYB61-CaAFR1 molecular module participating in the regulation of Khib levels and biosynthesis of cellulose and hemicellulose for the first time.

2.
J Cell Mol Med ; 28(9): e18318, 2024 May.
Article in English | MEDLINE | ID: mdl-38685674

ABSTRACT

Glioblastoma (GBM) represents a prevalent form of primary malignant tumours in the central nervous system, but the options for effective treatment are extremely limited. Ferroptosis, as the most enriched programmed cell death process in glioma, makes a critical difference in glioma progression. Consequently, inducing ferroptosis has become an appealing strategy for tackling gliomas. Through the utilization of multi-omics sequencing data analysis, flow cytometry, MDA detection and transmission electron microscopy, the impact of orexin-A on ferroptosis in GBM was assessed. In this report, we provide the first evidence that orexin-A exerts inhibitory effects on GBM proliferation via the induction of ferroptosis. This induction is achieved by instigating an unsustainable increase in iron levels and depletion of GPX4. Moreover, the regulation of TFRC, FTH1 and GPX4 expression through the targeting of NFE2L2 appears to be one of the potential mechanisms underlying orexin-A-induced ferroptosis.


Subject(s)
Cell Proliferation , Ferroptosis , Glioblastoma , Iron , Orexins , Phospholipid Hydroperoxide Glutathione Peroxidase , Animals , Humans , Mice , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Ferroptosis/drug effects , Ferroptosis/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Iron/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Orexins/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
3.
J Cell Mol Med ; 28(9): e18296, 2024 May.
Article in English | MEDLINE | ID: mdl-38702954

ABSTRACT

We investigated subarachnoid haemorrhage (SAH) macrophage subpopulations and identified relevant key genes for improving diagnostic and therapeutic strategies. SAH rat models were established, and brain tissue samples underwent single-cell transcriptome sequencing and bulk RNA-seq. Using single-cell data, distinct macrophage subpopulations, including a unique SAH subset, were identified. The hdWGCNA method revealed 160 key macrophage-related genes. Univariate analysis and lasso regression selected 10 genes for constructing a diagnostic model. Machine learning algorithms facilitated model development. Cellular infiltration was assessed using the MCPcounter algorithm, and a heatmap integrated cell abundance and gene expression. A 3 × 3 convolutional neural network created an additional diagnostic model, while molecular docking identified potential drugs. The diagnostic model based on the 10 selected genes achieved excellent performance, with an AUC of 1 in both training and validation datasets. The heatmap, combining cell abundance and gene expression, provided insights into SAH cellular composition. The convolutional neural network model exhibited a sensitivity and specificity of 1 in both datasets. Additionally, CD14, GPNMB, SPP1 and PRDX5 were specifically expressed in SAH-associated macrophages, highlighting its potential as a therapeutic target. Network pharmacology analysis identified some targeting drugs for SAH treatment. Our study characterised SAH macrophage subpopulations and identified key associated genes. We developed a robust diagnostic model and recognised CD14, GPNMB, SPP1 and PRDX5 as potential therapeutic targets. Further experiments and clinical investigations are needed to validate these findings and explore the clinical implications of targets in SAH treatment.


Subject(s)
Biomarkers , Deep Learning , Machine Learning , Macrophages , Single-Cell Analysis , Subarachnoid Hemorrhage , Subarachnoid Hemorrhage/genetics , Subarachnoid Hemorrhage/metabolism , Animals , Macrophages/metabolism , Single-Cell Analysis/methods , Rats , Biomarkers/metabolism , Male , Gene Expression Profiling , Transcriptome , Rats, Sprague-Dawley , Disease Models, Animal , Neural Networks, Computer , Molecular Docking Simulation
4.
J Am Chem Soc ; 146(10): 6962-6973, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38426449

ABSTRACT

The adsorption-type molecular switch exhibits bistable states with an equivalently long lifetime at the organic/inorganic interface, promising reliable switching behavior and superior assembly ability in the electronic circuits at the molecular scale. However, the number of reported adsorption-type molecular switches is currently less than 10, and exploring these molecular switches poses a formidable challenge due to the intricate interplay occurring at the interface. To address this challenge, we have developed a model enabling the identification of diverse molecular switches on metal surfaces based on easily accessible physical characteristics. These characteristics primarily include the metal valency electron concentration, the work function of metal surfaces, and the electronegativity difference of molecules. Using this model, we identified 56 new molecular switches. Employing the gradient descent algorithm and statistical linear discriminant analysis, we constructed an explicit descriptor that establishes a relationship between the interfacial structure and chemical environment and the stability of molecular switches. The model's accuracy was validated through density functional theory calculations, achieving a 90% accuracy for aromatic molecular switches. The conductive switching behaviors were further confirmed by nonequilibrium Green's function transport calculations.

5.
J Neuroinflammation ; 21(1): 131, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760784

ABSTRACT

BACKGROUND: Sepsis-associated encephalopathy (SAE) causes acute and long-term cognitive deficits. However, information on the prevention and treatment of cognitive dysfunction after sepsis is limited. The neuropeptide orexin-A (OXA) has been shown to play a protective role against neurological diseases by modulating the inflammatory response through the activation of OXR1 and OXR2 receptors. However, the role of OXA in mediating the neuroprotective effects of SAE has not yet been reported. METHODS: A mouse model of SAE was induced using cecal ligation perforation (CLP) and treated via intranasal administration of exogenous OXA after surgery. Mouse survival, in addition to cognitive and anxiety behaviors, were assessed. Changes in neurons, cerebral edema, blood-brain barrier (BBB) permeability, and brain ultrastructure were monitored. Levels of pro-inflammatory factors (IL-1ß, TNF-α) and microglial activation were also measured. The underlying molecular mechanisms were investigated by proteomics analysis and western blotting. RESULTS: Intranasal OXA treatment reduced mortality, ameliorated cognitive and emotional deficits, and attenuated cerebral edema, BBB disruption, and ultrastructural brain damage in mice. In addition, OXA significantly reduced the expression of the pro-inflammatory factors IL-1ß and TNF-α, and inhibited microglial activation. In addition, OXA downregulated the expression of the Rras and RAS proteins, and reduced the phosphorylation of P-38 and JNK, thus inhibiting activation of the MAPK pathway. JNJ-10,397,049 (an OXR2 blocker) reversed the effect of OXA, whereas SB-334,867 (an OXR1 blocker) did not. CONCLUSION: This study demonstrated that the intranasal administration of moderate amounts of OXA protects the BBB and inhibits the activation of the OXR2/RAS/MAPK pathway to attenuate the outcome of SAE, suggesting that OXA may be a promising therapeutic approach for the management of SAE.


Subject(s)
Mice, Inbred C57BL , Orexins , Sepsis-Associated Encephalopathy , Animals , Mice , Sepsis-Associated Encephalopathy/drug therapy , Sepsis-Associated Encephalopathy/metabolism , Orexins/metabolism , Male , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Disease Models, Animal , Administration, Intranasal
6.
J Transl Med ; 22(1): 10, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167131

ABSTRACT

BACKGROUND: Gut microbiota alterations have been implicated in sepsis and related infectious diseases, but the causal relationship and underlying mechanisms remain unclear. METHODS: We evaluated the association between gut microbiota composition and sepsis using two-sample Mendelian randomization (MR) analysis based on published genome-wide association study (GWAS) summary statistics. Sensitivity analyses were conducted to validate the robustness of the results. Reverse MR analysis and integration of GWAS and expression quantitative trait loci (eQTL) data were performed to identify potential genes and therapeutic targets. RESULTS: Our analysis identified 11 causal bacterial taxa associated with sepsis, with increased abundance of six taxa showing positive causal relationships. Ten taxa had causal effects on the 28-day survival outcome of septic patients, with increased abundance of six taxa showing positive associations. Sensitivity analyses confirmed the robustness of these associations. Reverse MR analysis did not provide evidence of reverse causality. Integration of GWAS and eQTL data revealed 76 genes passing the summary data-based Mendelian randomization (SMR) test. Differential expression of these genes was observed between sepsis patients and healthy individuals. These genes represent potential therapeutic targets for sepsis. Molecular docking analysis predicted potential drug-target interactions, further supporting their therapeutic potential. CONCLUSION: Our study provides insights for the development of personalized treatment strategies for sepsis and offers preliminary candidate targets and drugs for future drug development.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Humans , Gastrointestinal Microbiome/genetics , Network Pharmacology , Genome-Wide Association Study , Mendelian Randomization Analysis , Molecular Docking Simulation , Sepsis/genetics , Sequence Analysis, RNA
7.
Bioconjug Chem ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38904455

ABSTRACT

Currently, clinical therapeutic strategies for nasopharyngeal carcinoma (NPC) confront insurmountable dilemmas in which surgical resection is incomplete and chemotherapy/radiotherapy has significant side effects. Phototherapy offers a maneuverable, effective, and noninvasive pattern for NPC therapy. Herein, we developed a lysosome-targeted and pH-responsive nanophototheranostic for near-infrared II (NIR-II) fluorescence imaging-guided photodynamic therapy (PDT) and photothermal therapy (PTT) of NPC. A lysosome-targeted S-D-A-D-S-type NIR-II phototheranostic molecule (IRFEM) is encapsulated within the acid-sensitive amphiphilic DSPE-Hyd-PEG2k to form IRFEM@DHP nanoparticles (NPs). The prepared IRFEM@DHP exhibits a good accumulation in the acidic lysosomes for facilitating the release of IRFEM, which could disrupt lysosomal function by generating an amount of heat and ROS under laser irradiation. Moreover, the guidelines of NIR-II fluorescence enhance the accuracy of PTT/PDT for NPC and avoid damage to normal tissues. Remarkably, IRFEM@DHP enable efficient antitumor effects both in vitro and in vivo, opening up a new avenue for precise NPC theranostics.

8.
Inorg Chem ; 63(15): 6836-6844, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38567451

ABSTRACT

Endohedral metallofullerenes show great promise as molecular-scale memory units due to their robust architecture and protective capability for encapsulated atoms. However, the flat potential-energy surface within the cage often results in a severe disorder of encapsulated atoms. Here, we focused on prototypical systems involving Li@C60 on metallic surfaces, emphasizing the electrode's confinement effect on caged dynamics. We demonstrated that the varying interfacial stabilities induced by Li motion predominantly depend on the synergetic effect of van der Waals forces and covalent bonds rather than the previously assumed electrostatic interactions. We unveiled that the repulsion effect between encapsulated atom and the metal electrode primarily arises from the antibonding states between the metal states below the Fermi level and the degenerated frontier orbitals from HOMO-4 to HOMO. By manipulating orbital interactions, we observed an ordered arrangement of the encapsulated atom on Rec-Pt(111) at room temperature. Furthermore, our findings underscore the disruptive influence of electric fields on the stability of distinct Li positions, a phenomenon closely tied to the dipole moment induced by Li motion. This research provides a new perspective on the confined internal dynamics of endohedral metallofullerenes by manipulating cage-electrode interactions, contributing to precisely controlled molecular electronics.

9.
Angew Chem Int Ed Engl ; 63(4): e202317471, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38072830

ABSTRACT

Recently, CO2 hydrogenation had a new breakthrough resulting from the design of catalysts to effectively activate linear CO2 with symmetry-breaking sites. However, understanding the relationship between symmetry-breaking sites and catalytic activity at the atomic level is still a great challenge. In this study, a set of gold-copper alloy Au13 Cux (x=0-4) nanoclusters were used as research objects to show the symmetry-controlled breaking structure on the surface of nanoclusters with the help of manipulability of the Cu atoms. Among them, Au13 Cu3 nanocluster displays the highest degree of symmetry-breaking on its crystal structure compared with the other nanoclusters in the family. Where the three copper atoms occupying the surface of the icosahedral kernel unevenly with one copper atom is coordinately unsaturated (CuS2 motif relative to CuS3 motif). As expected, Au13 Cu3 has an excellent hydrogenation activity of CO2 , in which the current density is as high as 70 mA cm-2 (-0.97 V) and the maximum FECO reaches 99 % at -0.58 V. Through the combination of crystal structures and theoretical calculations, the excellent catalytic activity of Au13 Cu3 is revealed to be indeed closely related to its asymmetric structure.

10.
J Am Chem Soc ; 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36779635

ABSTRACT

"Core sliding" in metal nanoclusters drives the reconstruction of external structural units and provides an ideal platform for mapping their precise transformation mechanism and evolution pathway. However, observing the movement behavior of metal atoms in experiments is still challenging because of the uncertain stability of intermediates. In this work, a series of Au-Cd alloy nanoclusters with continuously assembled kernels (one icosahedral building block assembled with 0 to 3 tetrahedral units) were constructed. As the assembly continued, it eventually led to the Cd atom doping into the inner positions of the clusters. Importantly, the Cd doped into the interior of the cluster exhibits a different behavior than the surface or external Cd atoms (dispersion doping vs localized occupy), which provides experimental evidence of the sliding behavior in the nanocluster kernel. Furthermore, density functional theory (DFT) calculations reveal that this sliding behavior in the inner sites of nanoclusters is an energetically favorable process. In addition, these Au-Cd nanoclusters exhibit tunable optical properties with different assembly patterns in their kernels.

11.
J Am Chem Soc ; 145(29): 15859-15868, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37438248

ABSTRACT

Unraveling the evolution mechanism of metal nanoclusters is of great importance in understanding the formation and evolution of metallic condensed matters. In this work, the specific evolution process between a pair of gold nanocluster (Au NC) isomers is completely revealed by introducing hydride ligands to simplify the research system. A hydride-containing Au NC, Au22(SR)15H, was synthesized by kinetic control, and the positions of the hydrides were then confirmed by combining X-ray diffraction, neutron diffraction, and DFT calculations. Importantly, a reversible structural isomerization was found to occur on this Au22(SR)15H. By combining the crystal structures and theoretical calculations, the focus was placed on the hydride-binding site, and a [Au-H] migration mechanism of this isomerization process is clearly shown. Furthermore, this [Au-H] migration mechanism is confirmed by the subsequent capture and structural determination of theoretically predicted intermediates. This work provides insight into the dynamic behavior of hydride ligands in nanoclusters and a strategy to study the evolution mechanism of nanoclusters by taking the hydride ligand as the breakthrough point.

12.
Anal Chem ; 95(47): 17372-17383, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37963241

ABSTRACT

The activable NIR-based phototheranostic nanoplatform (NP) is considered an efficient and reliable tumor treatment due to its strong targeting ability, flexible controllability, minimal side effects, and ideal therapeutic effect. This work describes the rational design of a second near-infrared (NIR-II) fluorescence imaging-guided organic phototheranostic NP (FTEP-TBFc NP). The molecular-engineered phototheranostic NP has a sensitive response to glutathione (GSH), generating hydrogen sulfide (H2S) gas, and delivering ferrocene molecules in the tumor microenvironment (TME). Under 808 nm irradiation, FTEP-TBFc could not only simultaneously generate fluorescence, heat, and singlet oxygen but also greatly enhance the generation of reactive oxygen species to improve chemodynamic therapy (CDT) and photodynamic therapy (PDT) at a biosafe laser power of 0.33 W/cm2. H2S inhibits the activity of catalase and cytochrome c oxidase (COX IV) to cause the enhancement of CDT and hypothermal photothermal therapy (HPTT). Moreover, the decreased intracellular GSH concentration further increases CDT's efficacy and downregulates glutathione peroxidase 4 (GPX4) for the accumulation of lipid hydroperoxides, thus causing the ferroptosis process. Collectively, FTEP-TBFc NPs show great potential as a versatile and efficient NP for specific tumor imaging-guided multimodal cancer therapy. This unique strategy provides new perspectives and methods for designing and applying activable biomedical phototheranostics.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Tumor Microenvironment , Photochemotherapy/methods , Combined Modality Therapy , Neoplasms/diagnostic imaging , Neoplasms/drug therapy , Optical Imaging , Cell Line, Tumor , Theranostic Nanomedicine/methods
13.
Small ; 19(26): e2207995, 2023 06.
Article in English | MEDLINE | ID: mdl-36942859

ABSTRACT

Effectively interfering energy metabolism in tumor cells and simultaneously activating the in vivo immune system to perform immune attacks are meaningful for tumor treatment. However, precisely targeted therapy is still a huge challenge. Herein, a mitochondrial-targeting phototheranostic system, FE-T nanoparticles (FE-T NPs) are developed to damage mitochondria in tumor cells and change the tumor immunosuppressive microenvironment. FE-T NPs are engineered by encapsulating the near-infrared (NIR) absorbed photosensitizer IR-FE-TPP within amphiphilic copolymer DSPE-SS-PEG-COOH for high-performing with simultaneous mitochondrial-targeting, near-infrared II (NIR-II) fluorescence imaging, and synchronous photothermal therapy (PTT) /photodynamic therapy (PDT) /immune therapy (IMT). In tumor treatment, the disulfide in the copolymer can be cleaved by excess intracellular glutathione (GSH) to release IR-FE-TPP and accumulate in mitochondria. After 808 nm irradiation, the mitochondrial localization of FE-T NPs generated reactive oxygen species (ROS), and hyperthermia, leading to mitochondrial dysfunction, photoinductive apoptosis, and immunogenic cell death (ICD). Notably, in situ enhanced PDT/PTT in vivo via mitochondrial-targeting with FE-T NPs boosts highly efficient ICD toward excellent antitumor immune response. FE-T NPs provide an effective mitochondrial-targeting phototheranostic nanoplatform for imaging-guided tumor therapy.


Subject(s)
Nanoparticles , Neoplasms , Photochemotherapy , Humans , Combined Modality Therapy , Photosensitizing Agents , Neoplasms/diagnostic imaging , Neoplasms/therapy , Polymers , Mitochondria , Photochemotherapy/methods , Cell Line, Tumor , Phototherapy/methods , Tumor Microenvironment
14.
Mol Psychiatry ; 27(1): 731-743, 2022 01.
Article in English | MEDLINE | ID: mdl-34163013

ABSTRACT

The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Schizophrenia , Humans , Prefrontal Cortex/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Schizophrenia/genetics , Signal Transduction
15.
BMC Neurol ; 23(1): 89, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36855079

ABSTRACT

OBJECTIVE: To analyze and explore the risk factors for neurological symptoms in patients with purely hepatic Wilson's disease (WD) at diagnosis. METHODS: This retrospective study was conducted at the First Affiliated Hospital of the Guangdong Pharmaceutical University on 68 patients with purely hepatic WD aged 20.6 ± 7.2 years. The physical examinations, laboratory tests, color Doppler ultrasound of the liver and spleen, and magnetic resonance imaging (MRI) of the brain were performed. RESULTS: The elevated alanine transaminase (ALT) and aspartate transaminase (AST) levels and 24-h urinary copper level were higher in the purely hepatic WD who developed neurological symptoms (NH-WD) group than those in the purely hepatic WD (H-WD) group. Adherence to low-copper diet, and daily oral doses of penicillamine (PCA) and zinc gluconate (ZG) were lower in the NH-WD group than those in the H-WD group. Logistic regression analysis showed that insufficient doses of PCA and ZG were associated with the development of neurological symptoms in patients with purely hepatic WD at diagnosis. CONCLUSION: The development of neurological symptoms in patients with purely hepatic WD was closely associated with insufficient doses of PCA and ZG, and the inferior efficacy of copper-chelating agents. During the course of anti-copper treatment, the patient's medical status and the efficacy of copper excretion should be closely monitored.


Subject(s)
Hepatolenticular Degeneration , Humans , Brain , Copper , Hepatolenticular Degeneration/complications , Hepatolenticular Degeneration/drug therapy , Penicillamine/therapeutic use , Retrospective Studies , Risk Factors , Zinc/therapeutic use
16.
J Nanobiotechnology ; 21(1): 489, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111035

ABSTRACT

Orthotopic advanced hepatic tumor resection without precise location and preoperative downstaging may cause clinical postoperative recurrence and metastasis. Early accurate monitoring and tumor size reduction based on the multifunctional diagnostic-therapeutic integration platform could improve real-time imaging-guided resection efficacy. Here, a Near-Infrared II/Photoacoustic Imaging/Magnetic Resonance Imaging (NIR-II/PAI/MRI) organic nanoplatform IRFEP-FA-DOTA-Gd (IFDG) is developed for integrated diagnosis and treatment of orthotopic hepatic tumor. The IFDG is designed rationally based on the core "S-D-A-D-S" NIR-II probe IRFEP modified with folic acid (FA) for active tumor targeting and Gd-DOTA agent for MR imaging. The IFDG exhibits several advantages, including efficient tumor tissue accumulation, good tumor margin imaging effect, and excellent photothermal conversion effect. Therefore, the IFDG could realize accurate long-term monitoring and photothermal therapy non-invasively of the hepatic tumor to reduce its size. Next, the complete resection of the hepatic tumor in situ lesions could be realized by the intraoperative real-time NIR-II imaging guidance. Notably, the preoperative downstaging strategy is confirmed to lower the postoperative recurrence rate of the liver cancer patients under middle and advanced stage effectively with fewer side effects. Overall, the designed nanoplatform demonstrates great potential as a diagnostic-therapeutic integration platform for precise imaging-guided surgical navigation of orthotopic hepatic tumors with a low recurrence rate after surgery, providing a paradigm for diagnosing and treating the advanced tumors in the future clinical translation application.


Subject(s)
Liver Neoplasms , Nanoparticles , Surgery, Computer-Assisted , Humans , Phototherapy , Magnetic Resonance Imaging/methods , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Cell Line, Tumor
17.
Reprod Domest Anim ; 58(1): 81-88, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36107170

ABSTRACT

Fertilization proteins JUNO and CD9 play vital roles in sperm-egg fusion, but little is known about their expression patterns during in vitro maturation (IVM) and their function during in vitro fertilization (IVF) of bovine oocytes. In this study, qRT-PCR and immunofluorescence staining were used to detect the mRNA and protein expression levels of JUNO and CD9 genes in bovine oocytes and cumulus cells. Then, fertilization rate of MII oocytes treated with (i) JUNO antibody (1, 5 and 25 µg/ml) or (ii) CD9 antibody (1, 5 and 25 µg/ml) or (iii) CD9 antibody (5 µg/ml) + JUNO antibody (5 µg/ml) were recorded. Our results showed that the mRNA and protein expression levels of JUNO and CD9 genes significantly increased from bovine GV oocytes to MII oocytes, and similar mRNA expression patterns of JUNO and CD9 were also detected in cumulus cells. All groups of oocytes treated with CD9 antibody or JUNO antibody showed significantly decreased fertilization rates (p < .05). Particularly, the fertilization ability of oocytes treated with CD9 antibody (5 µg/ml) + JUNO antibody (5 µg/ml) sharply decreased to 3.48 ± 0.11%. In conclusion, our study revealed the expression levels of JUNO and CD9 genes in oocytes and cumulus cells increased during IVM of bovine oocytes, with JUNO protein playing a major role in the fertilization of bovine oocytes.


Subject(s)
Oocytes , Semen , Animals , Cattle , Female , Male , Antibodies , Cumulus Cells , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/metabolism , Spermatozoa/metabolism , Tetraspanin 29/metabolism , Receptors, Cell Surface/metabolism , Egg Proteins/metabolism
18.
Plant Dis ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37498629

ABSTRACT

Cyclocodon lancifolius Bunge in the family Campanulaceae, and commonly known as Hong Guo Ginseng, is found in the Indonesia, Philippines, Vietnam, Japan, and China. The leaves and roots of C. lancifolius are widely used as tonics by ethnic minorities in Guizhou and Hunan Provinces in China. In addition, the fruit is edible, and it is a new resource for both medicine and food. In June 2022, symptoms of leaf spot (Fig 1 A and B.) were observed on C. lancifolius plants in the medicinal plant greenhouse of Guizhou University of Traditional Chinese Medicine (106°61'E, 26°39'N), Guizhou Province. The incidence of leaf spot on C. lancifolius was approximately 40 to 70% of all leaves in canopy. Early symptoms on leaves were small circular or irregular brown spots. As the disease progressed the lesions gradually expanded, and multiple lesions coalesced to form large irregular brown spots. Eventually the seedlings died and leaves of mature plants wilted. In order to isolate the pathogen, ten leaf pieces (5×5 mm) were cut from the junction of the diseased and the healthy tissues, surface sterilized with 75% ethanol for 30 s, 0.1% mercuric chloride (HgCl2) solution for 60 s, rinsed in sterile water three times, finally dried and placed on potato dextrose agar (PDA) and cultured in the dark at 27°C for 4 days. Five purified fungal isolates were obtained by single spore isolation. The colonies were olivaceous to dark olive with white margins and abundant aerial mycelia. On potato carrot agar (PCA) medium, these fungi produced septate conidiophores. Conidia were obclavate or ellipsoid, brown, with one to four transverse septa and one to two longitudinal septa. Spores measured 7.64 to 14.20 × 3.32 to 6.38 µm (n=50). These morphological characteristics are consistent with Alternaria alternata (S. P. Wiltshire. 1933). To further confirm the identification, four genomic DNA regions including the ribosomal DNA internal transcribed spacer (ITS), translation elongation factor 1-a gene (TEF), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase II second largest subunit (RPB2), and Alternaria major allergen gene (Alt a1) were amplified and sequenced with primers ITS1/ITS4 (White et al. 1990), TEF1-728F/TEF1-986R (Carbone and Kohn 1999), gpd1/gpd2 (Berbee et al. 1999), RPB2-5F/RPB2-7cR (Liu et al. 1999), and Alt-for/Alt-rev (Hong et al. 2005), respectively. Sequences were deposited in GenBank with accession Nos. ITS: OQ128111, OQ690707, and OQ690708; TEF: OQ200380, OQ700996, and OQ700998; GAPDH: OQ200378, OQ700993, and OQ700995; RPB2:OQ200379, OQ701002, and OQ701004; Alt: OQ675614, OQ700999, and OQ701001. In a BLAST search, the sequences were 99-100% identical with corresponding sequences of A. alternata. A maximum likelihood phylogenetic tree was constructed with the combined sequence data sets of ITS, TEF, GAPDH, RPB2, and Alt a1 using MEGA 11. The isolate DHY0, DHY1, and DHY3 clustered with A. alternata (J. H. C. Woudenberg et al. 2015) (Fig. 2). To fulfill Koch's postulates, leaves on three healthy 3-month-old potted C. lancifolius seedlings were wounded with sterile needles and inoculated with 5 mm diameter mycelium, which was covered moist by sterile cotton for 24 h. Sterile water was used as the control. After inoculation, the plants were incubated at 27°C, 85% relative humidity, and a 12 h photoperiod. The experiment was repeated three times. Fifteen days after inoculation, all the leaves showed leaf spot symptoms that were similar to those observed in the greenhouse, while control leaves were asymptomatic (Fig. 1). A. alternata was successfully re-isolated from the symptomatic leaves and identified by morphology and the molecular methods described above. This pathogen has been reported to cause a leaf disease in a wide range of vegetables (Zhang et al. 2021), flowers (Zhang et al. 2022), and medicinal plants (Xing et al. 2020). To the best of our knowledge, this is the first report of A. alternata causing leaf spot on C. lancifolius in China. The accurate identification of this pathogen will provide a basis for the prevention and control of C. lancifolius leaf spot disease in the future.

19.
Mikrochim Acta ; 190(2): 58, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36653726

ABSTRACT

Metallic aerogels (MAs) are self-supported porous nanomaterials with excellent catalytic activity, which could be a promising candidate for high-performance nanozymes. The interface regulation by heteroatom and vacancies is an effective strategy for boosting the enzyme-mimicking activity. Herein, magnetic RuCo aerogels with doping of boron and oxygen vacancies were prepared by a one-pot spontaneous NaBH4 gelation method under a low temperature. The three-dimensional network structure with high specific surface area and interlinked pores of RuCo aerogels afford abundant active sites to facilitate the interaction with substrates. Moreover, the monolithic structure avoided conventional aggregation, thus enhancing stability during catalysis. Introducing elemtal boron and oxygen vacancies adjusted the electronic structure of RuCo aerogels to achieve enhanced enzyme-like performances. It is found that the RuCo aerogel nanozyme can mimic nature peroxidase, demonstrating their viable applications in the bioassay of H2O2 and glucose. The constructed glucose sensor possesses acceptable sensitivity and stability with a linear range of 0.002 ~ 5 mM and a low detection limit (1.66 µM). This work provides insights into the rational design of advanced nanozymes and paves the avenue for the applications of metallic aerogels in the bioassay field. A boron-doped RuCo bimetallic aerogel with rich oxygen vacancies was prepared by a facile self-assembly method under an ice bath. The unique physical and electronic structure of RuCo aerogel results in the improvement of the intrinsic peroxidaselike activity, and thus, a sensitive and robust colorimetric glucose sensor could be developed.


Subject(s)
Boron , Colorimetry , Colorimetry/methods , Hydrogen Peroxide/chemistry , Oxygen , Glucose/chemistry , Peroxidases/chemistry , Magnetic Phenomena
20.
Int J Mol Sci ; 24(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37373299

ABSTRACT

Rhizobia form symbiotic relationships with legumes, fixing atmospheric nitrogen into a plant-accessible form within their root nodules. Nitrogen fixation is vital for sustainable soil improvements in agriculture. Peanut (Arachis hypogaea) is a leguminous crop whose nodulation mechanism requires further elucidation. In this study, comprehensive transcriptomic and metabolomic analyses were conducted to assess the differences between a non-nodulating peanut variety and a nodulating peanut variety. Total RNA was extracted from peanut roots, then first-strand and second-strand cDNA were synthesized and purified. After sequencing adaptors were added to the fragments, the cDNA libraries were sequenced. Our transcriptomic analysis identified 3362 differentially expressed genes (DEGs) between the two varieties. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that the DEGs were mainly involved in metabolic pathways, hormone signal transduction, secondary metabolic biosynthesis, phenylpropanoid biosynthesis, or ABC transport. Further analyses indicated that the biosynthesis of flavonoids, such as isoflavones, flavonols, and flavonoids, was important for peanut nodulation. A lack of flavonoid transport into the rhizosphere (soil) could prevent rhizobial chemotaxis and the activation of their nodulation genes. The downregulation of AUXIN-RESPONSE FACTOR (ARF) genes and lower auxin content could reduce rhizobia's invasion of peanut roots, ultimately reducing nodule formation. Auxin is the major hormone that influences the cell-cycle initiation and progression required for nodule initiation and accumulates during different stages of nodule development. These findings lay the foundation for subsequent research into the nitrogen-fixation efficiency of peanut nodules.


Subject(s)
Fabaceae , Flavonoids , Flavonoids/metabolism , Arachis/metabolism , Transcriptome , Plant Root Nodulation/genetics , Indoleacetic Acids/metabolism , Fabaceae/genetics , Symbiosis/genetics , Hormones/metabolism , Soil , Nitrogen/metabolism , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL