Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Polymers (Basel) ; 15(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896313

ABSTRACT

Torrefaction of biomass is one of the most promising pretreatment methods for deriving biofuels from biomass via thermochemical conversion processes. In this work, the changes in physicochemical properties and morphology features of the torrefied corn stalk, the changes in physicochemical properties and morphology features of the torrefied corn stalk were investigated. The results of this study showed that the elemental content and proximate analysis of the torrefied corn stalk significantly changed compared with those of the raw corn stalk. In particular, at 300 °C, the volatile content decreased to 41.79%, while the fixed carbon content and higher heating value increased to 42.22% and 21.31 MJ/kg, respectively. The H/C and O/C molar ratios of torrefied corn stalk at the 300 °C were drastically reduced to 0.99 and 0.27, respectively, which are similar to those of conventional coals in China. Numerous cracks and pores were observed in the sample surface of torrefied corn stalk at the torrefaction temperature range of 275 °C-300 °C, which could facilitate the potential application of the sample in the adsorption process and promote the release of gas products in pyrolysis. In the pyrolysis phase, the liquid products of the torrefied corn stalk decreased, but the H2/CO ratio and the lower heating value of the torrefied corn stalk increased compared with those of the raw corn stalk. This work paves a new strategy for the investigation of the effect of torrefaction on the physiochemical characteristics and pyrolysis of the corn stalk, highlighting the application potential in the conversion of biomass.

2.
Sci Total Environ ; 626: 703-709, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29396335

ABSTRACT

The in-situ CO2 removal pyrolysis of Chinese herb residue was studied by thermodynamic equilibrium simulation and experimental methods. The effects of temperature, pressure, and CaO loading on the gas composition, heating value and yield were determined. The simulation results indicate that the heating value of product gas increases with the increase of Ca/H and pressure, and slightly decreases with the increase of temperature. The simulation results were verified by the experiments conducted with a micro fixed-bed reactor. Under the simulated reaction conditions including atmospheric pressure, reaction temperature of 700 °C and the Ca/H of 0.65, the CO2 in the product gas was effectively removed, resulting the syngas with a high heating value. The product gas was mainly composed of H2, CO, CO2 and CH4 with the contents of 47.52, 22.04, 9.01 and 14.02 respectively by experiment. And the lower heating value of the product gas reached 18.1 MJ/Nm3.

3.
ACS Appl Mater Interfaces ; 10(37): 31208-31224, 2018 Sep 19.
Article in English | MEDLINE | ID: mdl-29999302

ABSTRACT

A new class of hybrids with the unique electrocatalytic nanoarchitecture of Fe1- xS anchored on Fe3C-encapsulated and N-doped carbon nanotubes (Fe1- xS/Fe3C-NCNTs) is innovatively synthesized through a facile one-step carbonization-sulfurization strategy. The efficient synthetic protocols on phase structure evolution and dynamic decomposition behavior enable the production of the Fe1- xS/Fe3C-NCNT hybrid with advanced structural and electronic properties, in which the Fe vacancy-contained Fe1- xS showed the 3d metallic state electrons and an electroactive Fe in +2/+3 valence, and the electronic structure of the CNT was effectively modulated by the incorporated Fe3C and N, with the work function decreased from 4.85 to 4.63 eV. The meticulous structural, electronic, and compositional control unveils the unusual synergetic catalytic properties for the Fe1- xS/Fe3C-NCNT hybrid when developed as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs), in which the Fe3C- and N-incorporated CNTs with reduced work function and increased charge density provide a highway for electron transport and facilitate the electron migration from Fe3C-NCNTs to ultrahigh active Fe1- xS with the electron-donating effect, and the Fe vacancy-enriched Fe1- xS nanoparticles exhibit ultrahigh I3- adsorption and charge-transfer ability. As a consequence, the DSSC based on the Fe1- xS/Fe3C-NCNT CE delivers a high power conversion efficiency of 8.67% and good long-term stability with a remnant efficiency of 8.00% after 168 h of illumination, superior to those of traditional Pt. Furthermore, the possible catalytic mechanism toward I3- reduction is creatively proposed based on the structure-activity correlation. In this work, the structure engineering, electronic modulation, and composition control opens up new possibilities in constructing the novel electrocatalytic nanoarchitecture for highly efficient CEs in DSSCs.

4.
Dalton Trans ; 43(22): 8254-60, 2014 Jun 14.
Article in English | MEDLINE | ID: mdl-24695765

ABSTRACT

Individual CoFe alloy nanoparticles and CoFe-MgO nanocomposites were prepared through thermal reduction of single-source layered double hydroxide (LDH) precursors at various temperatures. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and vibrating sample magnetometer (VSM) analyses to investigate the influence of reduction temperature on the composition, particle size and size distribution, as well as the magnetic properties of the resulting materials. XRD and SEM results show that the as-prepared CoFe alloy nanoparticles and CoFe-MgO nanocomposites display high crystallinity and high purity. The average particle size of individual CoFe nanoparticles increases with the increase of reduction temperature. In the presence of the MgO matrix, uniform CoFe alloy nanoparticles with a narrow diameter distribution (8-11 nm) were obtained. Magnetic measurements indicate that the saturation magnetization strength (Ms) of the resulting materials increases with reduction temperature. The individual CoFe alloy nanoparticles exhibit excellent soft magnetic behavior with an extremely high Ms value (213 emu g(-1) at 800 °C), comparable to that of bulk CoFe alloy (230 emu g(-1)). For CoFe-MgO nanocomposites, small Ms values were obtained due to the small CoFe alloy particle size and low percentage of magnetic component. However, the coercivities are greatly enhanced (663 Oe at 450 °C) for the composites, implying their potential applications in data storage and other magnetic devices.

SELECTION OF CITATIONS
SEARCH DETAIL