Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38642078

ABSTRACT

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Subject(s)
Cordyceps , Cordyceps/genetics , Genes, Mating Type, Fungal , Plant Breeding , Adenosine , Spores, Fungal/genetics
2.
Mol Cell Biochem ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878223

ABSTRACT

LncRNAs have been demonstrated to regulate biological processes in malignant tumors. In our previous study, we identified the immune-related LncRNA RNF144A-AS1 as a potential regulator in SKCM. However, its precise function and regulatory mechanism remain unclear. In this study, we observed upregulation of RNF144A-AS1 in SKCM and found that knockdown of RNF144A-AS1 suppressed proliferation, migration, invasion, and epithelial-mesenchymal transition abilities of melanoma cells. Mechanistically, as a high-risk prognostic factor, RNF144A-AS1 regulated biological processes of SKCM by interacting with TAF15 through an RNA-binding protein-dependent (RBP-dependent) manner. Furthermore, we confirmed that TAF15 activated downstream transcriptional regulation of YAP1 to modulate malignant behaviors in melanoma cells. In vivo experiments revealed that knockdown of RNF144A-AS1 inhibited tumorigenic capacity of melanoma cells and exhibited promising therapeutic effects. Collectively, these findings highlight the significance of the RNF144A-AS1/TAF15/YAP1 axis in promoting malignant behaviors in SKCM and provide novel insights into potential prognostic biomarkers and therapeutic targets for this disease.

3.
Environ Toxicol ; 39(9): 4417-4430, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38842024

ABSTRACT

Gliomas are the most prevalent primary malignant brain tumors worldwide. Growing evidences indicate that circular RNAs (circRNAs) play an important role in the regulation of biological behavior of tumors. We aimed to investigate the role and mechanism of circVCAN in glioma. RNase R treatment was utilized to assess the cyclic properties of circVCAN. CircVCAN, miR-488-3p, and myocyte enhancer factor 2C (MEF2C) levels in glioma tissues and cells were detected by reverse transcription real-time polymerase chain reaction (RT-qPCR), and the localization of them in glioma cells was determined with fluorescence in situ hybridization. Furthermore, a variety of biologically functional assessments were used to validate the role of circVCAN in glioma. The regulatory mechanisms of circVCAN, miR-488-3p, and MEF2C were further confirmed by double luciferase reporter gene assay, RNA immunoprecipitation and RNA pull-down assay, and the binding of MEF2C to JAGGED1 was revealed by chromatin immunoprecipitation. Additionally, a xenograft tumor model was constructed to demonstrate the effect of circVCAN on tumor growth in vivo. Our results indicated that circVCAN was more stable than its linear RNA and was significantly upregulated in gliomas. CircVCAN overexpression stimulated glioma cells to proliferate and metastasize, but circVCAN silencing exerted the opposite effect. Meanwhile, silencing circVCAN inhibited tumor growth in vivo. Moreover, we found that circVCAN interacted with miR-488-3p to regulate MEF2C expression, and miR-488-3p inhibition or MEF2C overexpression reversed the inhibitory effect on malignant bio-behaviors mediated by circVCAN knockdown in glioma cells. MEF2C promoted the transcription of JAGGED1, and circVCAN knockdown reduced the binding between MEF2C and JAGGED1. Collectively, circVCAN is a carcinogenic circRNA in glioma, and the circVCAN/miR-488-3p/MEF2C-JAGGED1 axis could serve as a potential target for the management of glioma.


Subject(s)
Brain Neoplasms , Glioma , Jagged-1 Protein , MEF2 Transcription Factors , MicroRNAs , RNA, Circular , Animals , Humans , Male , Mice , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Disease Progression , Gene Expression Regulation, Neoplastic , Glioma/genetics , Glioma/pathology , Jagged-1 Protein/genetics , Jagged-1 Protein/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Versicans/genetics , Versicans/metabolism
4.
Molecules ; 29(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731434

ABSTRACT

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Subject(s)
Apoptosis , Cannabidiol , Neoplasms , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cannabidiol/chemistry , Humans , Apoptosis/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Animals , Autophagy/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Movement/drug effects , Cell Cycle/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry
5.
Environ Toxicol ; 38(5): 1118-1132, 2023 May.
Article in English | MEDLINE | ID: mdl-36810933

ABSTRACT

Cannabidiol (CBD) is a nonpsychoactive cannabinoid compound. It has been shown that CBD can inhibit the proliferation of ovarian cancer cells, but the underlying specific mechanism is unclear. We previously presented the first evidence for the expression of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), a member of the immunosuppressive receptor family, in ovarian cancer cells. In the present study, we investigated the mechanism by which CBD inhibits the growth of SKOV3 and CAOV3 ovarian cancer cells, and we sought to understand the concurrent role of LAIR-1. In addition to inducing ovarian cancer cell cycle arrest and promoting cell apoptosis, CBD treatment significantly affected the expression of LAIR-1 and inhibited the PI3K/AKT/mTOR signaling axis and mitochondrial respiration in ovarian cancer cells. These changes were accompanied by an increase in ROS, loss of mitochondrial membrane potential, and suppression of mitochondrial respiration and aerobic glycolysis, thereby inducing abnormal or disturbed metabolism and reducing ATP production. A combined treatment with N-acetyl-l-cysteine and CBD indicated that a reduction in ROS production would restore PI3K/AKT/mTOR pathway signaling and ovarian cancer cell proliferation. We subsequently confirmed that the inhibitory effect of CBD on the PI3K/AKT/mTOR signal axis and mitochondrial bioenergy metabolism was attenuated by knockdown of LAIR-1. Our animal studies further support the in vivo anti-tumor activity of CBD and suggest its mechanism of action. In summary, the present findings confirm that CBD inhibits ovarian cancer cell growth by disrupting the LAIR-1-mediated interference with mitochondrial bioenergy metabolism and the PI3K/AKT/mTOR pathway. These results provide a new experimental basis for research into ovarian cancer treatment based on targeting LAIR-1 with CBD.


Subject(s)
Cannabidiol , Ovarian Neoplasms , Animals , Female , Humans , Apoptosis , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , Cell Line, Tumor , Cell Proliferation , Mitochondria/metabolism , Ovarian Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , TOR Serine-Threonine Kinases/metabolism
6.
BMC Biotechnol ; 22(1): 9, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35255883

ABSTRACT

BACKGROUND: Antrodia cinnamomea, a rare medicinal fungus, has been increasingly studied in recent years because of its abundant secondary metabolites which are beneficial to humans. However, there is a lack of research on its polyphenols which are of good research value due to their antioxidant, anti-inflammatory, hypoglycemic and other activities. RESULTS: In this study, the effects of different extraction conditions on the yield of its polyphenols were investigated. Deep-Eutectic Solvents composed of choline chloride and malonic acid had the best extraction efficiency, with the optimal extraction conditions being as follows: a solid-liquid ratio of 40 mg/mL, an extraction temperature of 55 °C, an extraction time of 70 min and a DES with 20% water content. Under these conditions, the extraction yield of polyphenols reached 22.09 mg/g which was about 2 times that of alcohol-based extraction (10.95 mg/g). In vitro antioxidant test results further showed that polyphenols from A. cinnamomea had strong antioxidant activities. When the concentration of polyphenols reached 0.1 mg/mL of polyphenols, the scavenging activity of free radical basically reached its maximum, with values of 94.10%, 83.34% and 95.42% for DPPH, ABTS+ and ·OH scavenging. In this case, the corresponding IC50 values were 0.01, 0.014 and 0.007 mg/mL, respectively. CONCLUSIONS: This study lays the foundation for the efficient extraction and application of polyphenols from A. cinnamomea.


Subject(s)
Antioxidants , Polyphenols , Antioxidants/chemistry , Humans , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyporales , Solvents/chemistry
7.
Molecules ; 26(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202632

ABSTRACT

Sanghuangporus baumii, is a widely used medicinal fungus. The polyphenols extracted from this fungus exert antioxidant, anti-inflammatory, and hypoglycemic effects. In this study, polyphenols from the fruiting bodies of S. baumii were obtained using the deep eutectic solvent (DES) extraction method. The factors affecting the extraction yield were investigated at different conditions. Based on the results from single-factor experiments, response surface methodology was used to optimize the extraction conditions. The scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was determined. The results showed that the DES system composed of choline chloride and malic acid had the best extraction yield (6.37 mg/g). The optimal extraction parameters for response surface methodology were as follows: 42 min, 58 ℃, 1:34 solid-liquid (mg/mL), and water content of 39%. Under these conditions, the yield of polyphenols was the highest (12.58 mg/g). At 0.30 mg/mL, the scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was 95.71%, 91.08%, and 85.52%, respectively. Thus, the method using DES was more effective than the conventional method of extracting phenolic compounds from the fruiting bodies of S. baumii. Moreover, the extracted polyphenols exhibited potent antioxidant activity.


Subject(s)
Basidiomycota/chemistry , Complex Mixtures/chemistry , Free Radical Scavengers , Polyphenols , Chemical Fractionation , Free Radical Scavengers/chemistry , Free Radical Scavengers/isolation & purification , Polyphenols/chemistry , Polyphenols/isolation & purification
8.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 37(4): 490-491, 2017 04.
Article in Zh | MEDLINE | ID: mdl-30650512

ABSTRACT

The coexist of Chinese Medicine, Western Medicine and the Integrated Traditional Chinese and Western Medicine is the transitional period in long medical progress. They will eventually become a rela- tively consummate medicine modality-Integrated Traditional Chinese and Western Medicine. It's the inherit- ance, innovation and development which includes the advantages and essence of the other two Medicine, and will be the mainstream in the field of Medicine of China.


Subject(s)
Medicine, Chinese Traditional , Medicine , China , Humans
9.
Biochem Biophys Res Commun ; 458(2): 399-404, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25660999

ABSTRACT

Previous studies have shown that leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is expressed on most types of hamatopoietic cells and negatively regulate immune response, but the roles of LAIR-1 in tumor of the non-hematopoietic lineage have not been determined. Despite advances in therapy of epithelial ovarian cancer (EOC), many questions relating to EOC pathogenesis remain unanswered. The aim of this study was to investigate the clinical significance of LAIR-1 expression in EOC and explore the possible association between LAIR-1 and cancer. In this study, a tissue microarray containing 78 ovarian cancer cases was stained following a standard immunohistochemical protocol for LAIR-1 and the correlation of LAIR-1 expression with clinicopathologic features was assessed. LAIR-1 was detected to express in tumor cells of ovarian cancer tissues (73.1%) and EOC cell lines COC1 and HO8910, not in normal ovarian tissues. In addition, LAIR-1 expression correlates significantly with tumor grade (p = 0.004). Furthermore, down-regulation of LAIR-1 in HO8910 cells increased cell proliferation, colony formation and cell invasion. These data suggest that LAIR-1 has a relevant impact on EOC progression and may be helpful for a better understanding of molecular pathogenesis of cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplasms, Glandular and Epithelial/metabolism , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Receptors, Immunologic/metabolism , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Neoplasm Grading , Neoplasm Invasiveness/pathology
10.
J Tissue Eng ; 15: 20417314241286606, 2024.
Article in English | MEDLINE | ID: mdl-39371940

ABSTRACT

Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.

11.
J Orthop Translat ; 47: 191-206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39040489

ABSTRACT

The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article: This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.

12.
PeerJ ; 12: e17648, 2024.
Article in English | MEDLINE | ID: mdl-39006009

ABSTRACT

The rapid degeneration of Cordyceps militaris strains during subculture represents a bottleneck problem that affects production stability. This study explored the mechanism underlying this degeneration in three production and three wild-type strains of Cordyceps militaris, isolating single-conidium strains from each. The effects of subculturing on fructification in both original and single mating-type strains were compared. Changes in the ratio of the two mating types were analyzed in both original and degenerated strains. Based on these findings, the two mating strains were paired in different ratios to determine their effects on fruiting. The resulting five strains were heterokaryotic strains with both MAT1-1 and MAT1-2 mating-type genes. Strain jb-2 was a single mating type (MAT1-1) mutant strain that produced stable fruiting bodies but failed to produce ascospores. It was found that the loss of or imbalance in mating types was the main reason for the rapid degeneration of fruiting traits during subculture and that this occurred randomly in the MAT1-1 and MAT1-2 types. The strains differed significantly in their stability during subculture. Fruiting was stable in the single mating-type Jb-2 strain, and the eleventh-generation fruited normally. There were differences in yield between the production and wild strains after inoculation with spawn containing different proportions of mating types. The production strain was more stable when inoculated with strains with mating-type ratios of 1:9 to 9:1 without affecting the yield. However, the yield of the wild-type strain xf-1 was positively correlated with the proportion of the MAT1-2 type, while the other two strains showed no correlations. Subculturing single mating-type mycelia separately and mixing them before production effectively mitigated degeneration during subculture. For Cordyceps militaris breeding, selecting strains containing both mating types, which are insensitive to the proportion of mating-type genes, enhanced stability in subculture and reduced the risk of mating-type loss. Direct breeding of specific single-mating type strains to induce fruiting is thus an effective breeding strategy.


Subject(s)
Cordyceps , Genes, Mating Type, Fungal , Cordyceps/genetics , Genes, Mating Type, Fungal/genetics , Fruiting Bodies, Fungal
13.
Front Pharmacol ; 15: 1374669, 2024.
Article in English | MEDLINE | ID: mdl-38895626

ABSTRACT

Pulmonary fibrosis is a progressive, irreversible, chronic interstitial lung disease associated with high morbidity and mortality rates. Current clinical drugs, while effective, do not reverse or cure pulmonary fibrosis and have major side effects, there are urgent needs to develop new anti-pulmonary fibrosis medicine, and corresponding industrially scalable process as well. Salvia castanea Diels f. tomentosa Stib., a unique herb in Nyingchi, Xizang, China, is a variant of S. castanea. and its main active ingredient is rosmarinic acid (RA), which can be used to prepare methyl rosmarinate (MR) with greater drug potential. This study presented an industrially scalable process for the preparation of MR, which includes steps such as polyamide resin chromatography, crystallization and esterification, using S. castanea Diels f. tomentosa Stib. as the starting material and the structure of the product was verified by NMR technology. The anti-pulmonary fibrosis effects of MR were further investigated in vivo and in vitro. Results showed that this process can easily obtain high-purity RA and MR, and MR attenuated bleomycin-induced pulmonary fibrosis in mice. In vitro, MR could effectively inhibit TGF-ß1-induced proliferation and migration of mouse fibroblasts L929 cells, promote cell apoptosis, and decrease extracellular matrix accumulation thereby suppressing progressive pulmonary fibrosis. The anti-fibrosis effect of MR was stronger than that of the prodrug RA. Further study confirmed that MR could retard pulmonary fibrosis by down-regulating the phosphorylation of the TGF-ß1/Smad and MAPK signaling pathways. These results suggest that MR has potential therapeutic implications for pulmonary fibrosis, and the establishment of this scalable preparation technology ensures the development of MR as a new anti-pulmonary fibrosis medicine.

14.
Zhong Yao Cai ; 36(6): 938-40, 2013 Jun.
Article in Zh | MEDLINE | ID: mdl-24380280

ABSTRACT

OBJECTIVE: To study the chemical constituents of chloroform fraction from Aconitum bulleyanum. METHODS: The compounds were isolated by various chromatographic techniques and identified by spectroscopic methods. RESULTS: 7 compounds were obtained and identified as yunaconitine (1), crassicaudine (2), foresaconitine (3), chasmaconitine (4), bulleyaconitine A (5), franchetine (6), and beta-sitosterol (7), CONCLUSION: Compounds 2-7 are isolated from this plant for the first time.


Subject(s)
Aconitine/analogs & derivatives , Aconitum/chemistry , Alkaloids/chemistry , Diterpenes/chemistry , Aconitine/chemistry , Aconitine/isolation & purification , Alkaloids/isolation & purification , Diterpenes/isolation & purification , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/isolation & purification , Magnetic Resonance Spectroscopy , Molecular Structure , Plant Roots/chemistry , Sitosterols/chemistry , Sitosterols/isolation & purification
15.
Asian J Surg ; 46(1): 35-46, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35504778

ABSTRACT

Autologous lipotransfer is an essential component of soft tissue reconstruction. However, it is not widely applied or accepted by surgeons due to its unstable survival rate and uncertain efficacy. The cell-assisted fat transfer (CAL) is a promising technique that increases the fat survival rate. However, it is controversial based on various clinical studies. Here, we assessed the fat survival and complication rates of CAL, compared to the conventional autologous lipotransfer. To conduct our research, two reviewers independently screened related articles published in Medicine (via PubMed), EMBASE, Cochrane Library, and Web of Science. The combined effect estimates for efficacy evaluation was performed by the Review Manager software (RevMan 5.4.1). In total, 14 articles were included in our analysis (n = 722). Based on our analysis, the survival rate of the fat graft in CAL was significantly higher than the conventional fat grafting group (non-CAL group) (SMD = 2.81, 95%CI [1.54, 4.08], P < 0.01). In the subgroup, the fat retention of CAL in the facial filling was higher than the conventional one (SMD = 3.01, 95%CI [1.68, 4.33], P < 0.01). After breast augmentation, however, the difference between the experimental and control group was not statistically significant (SMD = 1.80, 95%CI [-0.31, 3.91], P = 0.09). Moreover, the CAL group exhibited comparable complications as the non-CAL group. Based on our analysis, the CAL group was significantly better than the conventional lipotransfer in terms of fat survival, particularly, during facial filling. However, it failed to reduce the complication rate, compared to the non-CAL group.


Subject(s)
Mammaplasty , Humans , Mammaplasty/methods , Face
16.
Regen Biomater ; 10: rbad083, 2023.
Article in English | MEDLINE | ID: mdl-37808955

ABSTRACT

In recent decades, bone tissue engineering, which is supported by scaffold, seed cells and bioactive molecules (BMs), has provided new hope and direction for treating bone defects. In terms of seed cells, compared to bone marrow mesenchymal stem cells, which were widely utilized in previous years, adipose-derived stem cells (ADSCs) are becoming increasingly favored by researchers due to their abundant sources, easy availability and multi-differentiation potentials. However, there is no systematic theoretical basis for selecting appropriate biomaterials loaded with ADSCs. In this review, the regulatory effects of various biomaterials on the behavior of ADSCs are summarized from four perspectives, including biocompatibility, inflammation regulation, angiogenesis and osteogenesis, to illustrate the potential of combining various materials with ADSCs for the treatment of bone defects. In addition, we conclude the influence of additional application of various BMs on the bone repair effect of ADSCs, in order to provide more evidences and support for the selection or preparation of suitable biomaterials and BMs to work with ADSCs. More importantly, the associated clinical case reports and experiments are generalized to provide additional ideas for the clinical transformation and application of bone tissue engineering loaded with ADSCs.

17.
Front Nutr ; 10: 1104446, 2023.
Article in English | MEDLINE | ID: mdl-36875834

ABSTRACT

Cordycepin, an important active substance in Cordyceps militaris, possesses antiviral and other beneficial activities. In addition, it has been reported to effectively promote the comprehensive treatment of COVID-19 and thus has become a research hotspot. The addition of naphthalene acetic acid (NAA) is known to significantly improve the yield of cordycepin; however, its related molecular mechanism remains unclear. We conducted a preliminary study on C. militaris with different concentrations of NAA. We found that treatment with different concentrations of NAA inhibited the growth of C. militaris, and an increase in its concentration significantly improved the cordycepin content. In addition, we conducted a transcriptome and metabolomics association analysis on C. militaris treated with NAA to understand the relevant metabolic pathway of cordycepin synthesis under NAA treatment and elucidate the relevant regulatory network of cordycepin synthesis. Weighted gene co-expression network analysis (WGCNA), transcriptome, and metabolome association analysis revealed that genes and metabolites encoding cordycepin synthesis in the purine metabolic pathway varied significantly with the concentration of NAA. Finally, we proposed a metabolic pathway by analyzing the relationship between gene-gene and gene-metabolite regulatory networks, including the interaction of cordycepin synthesis key genes; key metabolites; purine metabolism; TCA cycle; pentose phosphate pathway; alanine, aspartate, and glutamate metabolism; and histidine metabolism. In addition, we found the ABC transporter pathway to be significantly enriched. The ABC transporters are known to transport numerous amino acids, such as L-glutamate, and participate in the amino acid metabolism that affects the synthesis of cordycepin. Altogether, multiple channels work together to double the cordycepin yield, thereby providing an important reference for the molecular network relationship between the transcription and metabolism of cordycepin synthesis.

18.
J Tissue Eng ; 14: 20417314231175364, 2023.
Article in English | MEDLINE | ID: mdl-37342486

ABSTRACT

Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.

19.
Theranostics ; 13(10): 3245-3275, 2023.
Article in English | MEDLINE | ID: mdl-37351163

ABSTRACT

Large bone defects are a major global health concern. Bone tissue engineering (BTE) is the most promising alternative to avoid the drawbacks of autograft and allograft bone. Nevertheless, how to precisely control stem cell osteogenic differentiation has been a long-standing puzzle. Compared with biochemical cues, physicomechanical stimuli have been widely studied for their biosafety and stability. The mechanical properties of various biomaterials (polymers, bioceramics, metal and alloys) become the main source of physicomechanical stimuli. By altering the stiffness, viscoelasticity, and topography of materials, mechanical stimuli with different strengths transmit into precise signals that mediate osteogenic differentiation. In addition, externally mechanical forces also play a critical role in promoting osteogenesis, such as compression stress, tensile stress, fluid shear stress and vibration, etc. When exposed to mechanical forces, mesenchymal stem cells (MSCs) differentiate into osteogenic lineages by sensing mechanical stimuli through mechanical sensors, including integrin and focal adhesions (FAs), cytoskeleton, primary cilium, ions channels, gap junction, and activating osteogenic-related mechanotransduction pathways, such as yes associated proteins (YAP)/TAZ, MAPK, Rho-GTPases, Wnt/ß-catenin, TGFß superfamily, Notch signaling. This review summarizes various biomaterials that transmit mechanical signals, physicomechanical stimuli that directly regulate MSCs differentiation, and the mechanical transduction mechanisms of MSCs. This review provides a deep and broad understanding of mechanical transduction mechanisms and discusses the challenges that remained in clinical translocation as well as the outlook for the future improvements.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Osteogenesis/physiology , Mechanotransduction, Cellular , Biocompatible Materials , Tissue Engineering , Mesenchymal Stem Cells/metabolism , Cell Differentiation
20.
Yao Xue Xue Bao ; 47(1): 39-44, 2012 Jan.
Article in Zh | MEDLINE | ID: mdl-22493803

ABSTRACT

In our recent study by exploring an intein-based dual-vector to deliver a B-domain-deleted FVIII (BDD-FVIII) gene, it showed that covalently ligated intact BDD-FVIII molecules with a specific coagulant activity could be produced from expressed heavy and light chains by protein trans-splicing. Here, we assessed the hypothesis that the efficiency of trans-splicing may be increased by adding to the intein sequences a pair of leucine zippers that are known to bring about specific and strong protein binding. The intein-fused heavy and light chain genes were co-transferred into cultured COS-7 cells using a dual-vector system. After transient expression, the intracellular BDD-FVIII splicing was observed and the spliced BDD-FVIII and bioactivity secreted to culture media were quantitatively analyzed. An enhanced splicing of BDD-FVIII with decreased protein precursors from gene co-transfected cells was observed by Western blotting. The amount of spliced BDD-FVIII and bioactivity secreted to the culture media were 106 +/- 12 ng x mL(-1) and 0.89 +/- 0.11 U x mL(-1) analyzed by ELISA and Coatest method respectively, which was greater than leucine zipper free intein-fused heavy and light chain genes co-transfected cells (72 +/- 10 ng x mL(-1) and 0.62 +/- 0.07 U x mL(-1)). The activity of cellular mechanism-independent protein splicing was also improved, as showed by the increasing of spliced BDD-FVIII and bioactivity in culture media from combined cells separately transfected with heavy and light chain genes which was 36 +/- 11 ng x mL(-1) and 0.28 +/- 0.09 U x mL(-1). It demonstrated that the leucine zippers could be used to increase the efficiency of protein trans-splicing to improve the efficacy of a dual-vector mediated BDD-FVIII gene delivery by strengthening the interaction between the two intein-pieces fused to heavy and light chains. It provided evidence for further study in animal model using a dual-adeno-associated virus vector to deliver FVIII gene in vivo.


Subject(s)
Factor VIII , Genetic Vectors , Inteins , Leucine Zippers , Peptide Fragments , Protein Splicing , Animals , COS Cells , Chlorocebus aethiops , Factor VIII/chemistry , Factor VIII/genetics , Factor VIII/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Trans-Splicing , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL