Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 248
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nucleic Acids Res ; 51(1): 198-217, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36583364

ABSTRACT

Polyploidy and the subsequent ploidy reduction and genome shuffling are the major driving forces of genome evolution. Here, we revealed short-term allopolyploid genome evolution by sequencing a synthetic intergeneric hybrid (Raphanobrassica, RRCC). In this allotetraploid, the genome deletion was quick, while rearrangement was slow. The core and high-frequency genes tended to be retained while the specific and low-frequency genes tended to be deleted in the hybrid. The large-fragment deletions were enriched in the heterochromatin region and probably derived from chromosome breaks. The intergeneric translocations were primarily of short fragments dependent on homoeology, indicating a gene conversion origin. To accelerate genome shuffling, we developed an efficient genome editing platform for Raphanobrassica. By editing Fanconi Anemia Complementation Group M (FANCM) genes, homoeologous recombination, chromosome deletion and secondary meiosis with additional ploidy reduction were accelerated. FANCM was shown to be a checkpoint of meiosis and controller of ploidy stability. By simultaneously editing FLIP genes, gene conversion was precisely introduced, and mosaic genes were produced around the target site. This intergeneric hybrid and genome editing platform not only provides models that facilitate experimental evolution research by speeding up genome shuffling and conversion but also accelerates plant breeding by enhancing intergeneric genetic exchange and creating new genes.


Subject(s)
Brassica , DNA Shuffling , Polyploidy , Raphanus , Humans , DNA Helicases , Genome, Plant , Raphanus/genetics , Brassica/genetics
2.
Proc Natl Acad Sci U S A ; 119(17): e2117938119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35452314

ABSTRACT

Cell mass and chemical composition are important aggregate cellular properties that are especially relevant to physiological processes, such as growth control and tissue homeostasis. Despite their importance, it has been difficult to measure these features quantitatively at the individual cell level in intact tissue. Here, we introduce normalized Raman imaging (NoRI), a stimulated Raman scattering (SRS) microscopy method that provides the local concentrations of protein, lipid, and water from live or fixed tissue samples with high spatial resolution. Using NoRI, we demonstrate that protein, lipid, and water concentrations at the single cell are maintained in a tight range in cells under the same physiological conditions and are altered in different physiological states, such as cell cycle stages, attachment to substrates of different stiffness, or by entering senescence. In animal tissues, protein and lipid concentration varies with cell types, yet an unexpected cell-to-cell heterogeneity was found in cerebellar Purkinje cells. The protein and lipid concentration profile provides means to quantitatively compare disease-related pathology, as demonstrated using models of Alzheimer's disease. This demonstration shows that NoRI is a broadly applicable technique for probing the biological regulation of protein mass, lipid mass, and water mass for studies of cellular and tissue growth, homeostasis, and disease.


Subject(s)
Nonlinear Optical Microscopy , Spectrum Analysis, Raman , Lipid Metabolism , Lipids , Microscopy/methods , Proteins , Spectrum Analysis, Raman/methods
3.
J Am Chem Soc ; 146(34): 23764-23774, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39149921

ABSTRACT

Lithium-sulfur (Li-S) batteries enable a promising high-energy-storage system while facing practical challenges regarding lithium dendrites and lithium polysulfides (LiPSs) shuttling. Herein, a fascinating SO3H-functionalized graphdiyne (SOGDY) was developed by grafting SO3H onto GDY to modify the separator in Li-S batteries. It realizes structure-retained material transformation, that is, SOGDY retains the crystalline all-carbon network and uniform subnanopores from the initial GDY. The abundant SO3H and uniform pores create a rapid Li+ transport relay station, benefit rapid Li+ transport and even lithium deposition, and prevent lithium dendrite growth. The spatial obstruction and strong polar adsorption sites from SO3H effectively inhibit LiPS shuttling. Additionally, SOGDY establishes a fast electron-transfer pathway to facilitate the LiPS conversion. The SOGDY/PP separator exhibited steady cycling at 1 mA cm-2 over 3500 h in the Li∥Li symmetric battery and achieved outstanding low-temperature and high-rate performance in the Li-S battery with a high initial specific capacity of 804.5 mA h g-1 and a final capacity of 504.9 mA h g-1 after 500 cycles at 3 C and -10 °C. This work demonstrates that introducing a stable all-carbon network and uniform functionalized nanopores is an effective strategy to modify the Li-S battery separator.

4.
Mol Carcinog ; 63(8): 1559-1571, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38780126

ABSTRACT

The therapeutic effect of anlotinib on neuroblastoma is still not fully understood. This study aims to explore the differentiation therapeutic effects of anlotinib on neuroblastoma and its potential association with the neural development regulatory protein collapsin response mediator protein 5 (CRMP5), both in vivo and in vitro. A patient-derived xenograft (PDX) model was established to observe the therapeutic effect of anlotinib. Neuroblastoma cell lines SK-N-SH and SK-N-AS were cultured to observe the morphological impact of anlotinib. Transwell assay was used to evaluate the cell invasion, and Western blot analysis and immunohistochemistry were employed to detect the expressions of neuronal differentiation-related proteins. Results indicate that anlotinib effectively inhibited tumor growth in the PDX model, modulated the expressions of neuronal differentiation markers. In vitro, anlotinib treatment induced neurite outgrowth in neuroblastoma cells and inhibited their invasive ability, reflecting a change in neuronal marker expression patterns consistent with the PDX model. Similarly, in the SK-N-AS mouse xenograft model, anlotinib demonstrated comparable tumor-suppressing effects and promoted neuronal-like differentiation. Additionally, anlotinib significantly downregulated CRMP5 expression in neuroblastoma both in vivo and in vitro. Overexpression of CRMP5 significantly reversed the differentiation therapy effect of anlotinib, exacerbating the aggressiveness and reducing the differentiation level of neuroblastoma. These findings highlight the potential of anlotinib as an anti-neuroblastoma agent. It may suppress tumor proliferation and invasion by promoting the differentiation of tumor cells towards a neuronal-like state, and this differentiation therapy effect involves the inhibition of CRMP5 signaling.


Subject(s)
Cell Differentiation , Cell Proliferation , Indoles , Nerve Tissue Proteins , Neuroblastoma , Quinolines , Xenograft Model Antitumor Assays , Humans , Neuroblastoma/drug therapy , Neuroblastoma/pathology , Neuroblastoma/metabolism , Neuroblastoma/genetics , Animals , Mice , Quinolines/pharmacology , Cell Differentiation/drug effects , Indoles/pharmacology , Cell Line, Tumor , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Down-Regulation/drug effects , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Mice, Nude , Hydrolases/genetics , Hydrolases/metabolism , Antineoplastic Agents/pharmacology , Microtubule-Associated Proteins
5.
Phys Rev Lett ; 133(3): 036003, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39094159

ABSTRACT

This work reports on the emergence of quantum Griffiths singularity (QGS) associated with the magnetic field induced superconductor-metal transition (SMT) in unconventional Nd_{0.8}Sr_{0.2}NiO_{2} infinite layer superconducting thin films. The system manifests isotropic SMT features under both in-plane and perpendicular magnetic fields. Importantly, after scaling analysis of the isothermal magnetoresistance curves, the obtained effective dynamic critical exponents demonstrate divergent behavior when approaching the zero-temperature critical point B_{c}^{*}, identifying the QGS characteristics. Moreover, the quantum fluctuation associated with the QGS can quantitatively explain the upturn of the upper critical field around zero temperature for both the in-plane and perpendicular magnetic fields in the phase boundary of SMT. These properties indicate that the QGS in the Nd_{0.8}Sr_{0.2}NiO_{2} superconducting thin film is isotropic. Moreover, a higher magnetic field gives rise to a metallic state with the resistance-temperature relation R(T) exhibiting lnT dependence among the 2-10 K range and T^{2} dependence of resistance below 1.5 K, which is significant evidence of Kondo scattering. The interplay between isotropic QGS and Kondo scattering in the unconventional Nd_{0.8}Sr_{0.2}NiO_{2} superconductor can illustrate the important role of rare region in QGS and help to uncover the exotic superconductivity mechanism in this system.

6.
Chemistry ; 30(5): e202302684, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37888750

ABSTRACT

The exploration of advanced nickel-based electrocatalysts for alkaline methanol oxidation reaction (MOR) holds immense promise for value-added organic products coupled with hydrogen production, but still remain challenging. Herein, we construct ultrathin NiO/Cr2 O3 in-plane heterostructures to promote the alkaline MOR process. Experimental and theoretical studies reveal that NiO/Cr2 O3 in-plane heterostructures enable a favorable upshift of the d-band center and enhanced adsorption of hydroxyl species, leading to accelerated generation of active NiO(OH)ads species. Furthermore, ultrathin in-plane heterostructures endow the catalyst with good charge transfer ability and adsorption behavior of methanol molecules onto catalytic sites, contributing to the improvement of alkaline MOR kinetics. As a result, ultrathin NiO/Cr2 O3 in-plane heterostructures exhibit a remarkable MOR activity with a high current density of 221 mA cm-2 at 0.6 V vs Ag/AgCl, which is 7.1-fold larger than that of pure NiO nanosheets and comparable with other highly active catalysts reported so far. This work provides an effectual strategy to optimize the activity of nickel-based catalysts and highlights the dominate efficacy of ultrathin in-plane heterostructures in alkaline MOR.

7.
Chirality ; 36(2): e23638, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38384151

ABSTRACT

Chiral pesticides have the special chiral structures, so enantioselective biological effects are usually observed in living organisms. Current study used paclobutrazol as a case study and explored the enantioselective degradation and oxidative stress effect on wheat. The results demonstrated that the degradation of R-paclobutrazol was faster than S-paclobutrazol significantly and improved the content of MDA and O2 - in wheat plants, which proved that the R-paclobutrazol induced oxidative damage in wheat, showing selective biological effects, and S-paclobutrazol was friendly to wheat. This study provided a theoretical basis for the selective activity of chiral pesticides and the development of chiral pesticide monomers.


Subject(s)
Pesticides , Triazoles , Triticum , Triticum/metabolism , Stereoisomerism , Pesticides/chemistry , Oxidative Stress
8.
Luminescence ; 39(8): e4854, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39103184

ABSTRACT

In this work, a benzofuranone-derived fluorescent probe BFSF was developed for imaging the sulphite level in living hypoxia pulmonary cells. Under the excitation of 510 nm, BFSF showed a strong fluorescence response at 570 nm when reacted with sulphite. In the solution system, the constructed hypercapnia and serious hypercapnia conditions did not affect the fluorescence response. In comparison with the recently reported probes, BFSF suggested the advantages including rapid response, steady signal reporting, high specificity and low cytotoxicity upon living lung cells. Under a normal incubation atmosphere, BFSF realized the imaging of both exogenous and endogenous sulphite in living pulmonary cells. In particular, BFSF achieved imaging the decrease of the sulphite level under severe hypoxia as well as the recovery of the sulphite level with urgent oxygen supplement. With the imaging capability for the sulphite level in living pulmonary cells under hypoxia conditions, BFSF together with the information herein was meaningful for investigating the anaesthesia-related biological indexes.


Subject(s)
Benzofurans , Fluorescent Dyes , Lung , Sulfites , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Benzofurans/chemistry , Benzofurans/chemical synthesis , Sulfites/analysis , Sulfites/chemistry , Lung/diagnostic imaging , Lung/cytology , Humans , Cell Hypoxia , Optical Imaging , Molecular Structure
9.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(5): 687-697, 2024 May 28.
Article in English, Zh | MEDLINE | ID: mdl-39174882

ABSTRACT

OBJECTIVES: Flotillin-2 (FLOT2) is a prototypical oncogenic and a potential target for cancer therapy. However, strategies for targeting FLOT2 remain undefined. Post-translational modifications are crucial for regulating protein stability, function, and localization. Understanding the mechanisms and roles of post-translational modifications is key to developing targeted therapies. This study aims to investigate the regulation and function of lysine acetylation of FLOT2 in nasopharyngeal carcinoma, providing new insights for targeting FLOT2 in cancer intervention. METHODS: The PhosphoSitePlus database was used to analyze the lysine acetylation sites of FLOT2, and a lysine acetylation site mutation of FLOT2 [FLOT2 (K211R)] was constructed. Nasopharyngeal carcinoma cells were treated with histone deacetylase (HDAC) inhibitor trichostatin A (TSA) and Sirt family deacetylase inhibitor nicotinamide (NAM). TSA-treated human embryonic kidney (HEK)-293T were transfected with FLOT2 mutant plasmids. Co-immunoprecipitation (Co-IP) was used to detect total acetylation levels of FLOT2 and the effects of specific lysine (K) site mutations on FLOT2 acetylation. Western blotting was used to detect FLOT2/FLAG-FLOT2 protein expression in TSA-treated nasopharyngeal carcinoma cells transfected with FLOT mutant plasmids, and real-time reverse transcription PCR (real-time RT-PCR) was used to detect FLOT2 mRNA expression. Nasopharyngeal carcinoma cells were treated with TSA combined with MG132 or chloroquine (CQ) to analyze FLOT2 protein expression. Cycloheximide (CHX) was used to treat HEK-293T cells transfected with FLAG-FLOT2 (WT) or FLAG-FLOT2(K211R) plasmids to assess protein degradation rates. The BioGrid database was used to identify potential interactions between FLOT2 and HDAC6, which were validated by Co-IP. HEK-293T cells were co-transfected with FLAG-FLOT2 (WT)/FLAG-FLOT2 (K211R) and Vector/HDAC6 plasmids, and grouped into FLAG-FLOT2 (WT)+Vector, FLAG-FLOT2 (WT)+HDAC6, FLAG-FLOT2 (K211R)+Vector, and FLAG-FLOT2 (K211R)+HDAC6 to analyze the impact of K211R mutation on total lysine acetylation levels. In 6-0B cells, overexpression of FLOT2 (WT) and FLOT2 (K211R) was performed, and the biological functions of FLOT2 acetylation site mutants were assessed using cell counting kit-8 (CCK-8), colony formation, and Transwell invasion assays. RESULTS: The PhosphoSitePlus database indicated that FLOT2 has an acetylation modification at the K211 site. Co-IP confirmed significant acetylation of FLOT2, with TSA significantly increasing overall FLOT2 acetylation levels, while NAM had no effect. Mutation at the K211 site significantly reduced overall FLOT2 acetylation, unaffected by TSA. TSA decreased FLOT2 protein expression in nasopharyngeal carcinoma cells without affecting FLOT2 mRNA levels or FLOT2 (K211R) protein expression in transfected cells. The degradation rate of FLOT2 (K211R) protein was significantly slower than that of FLOT2 (WT). The proteasome inhibitor MG132 prevented TSA-induced FLOT2 degradation, while the lysosome inhibitor CQ did not. BioGrid data suggested a potential interaction between FLOT2 and HDAC6, confirmed by Co-IP. Knockdown of HDAC6 in nasopharyngeal carcinoma cells significantly increased FLOT2 acetylation; co-transfection of HDAC6 and FLAG-FLOT2 (WT) significantly decreased total lysine acetylation levels, whereas co-transfection of HDAC6 and FLAG-FLOT2 (K211R) had no effect. Knockdown of HDAC6 significantly reduced FLOT2 protein levels without affecting mRNA levels. MG132 prevented HDAC6-knockdown-induced FLOT2 degradation. Knockdown of HDAC6 significantly accelerated FLOT2 degradation. Nasopharyngeal carcinoma cells transfected with FLOT2 (K211R) showed significantly higher proliferation and invasion than those transfected with FLOT2 (WT). CONCLUSIONS: The K211 site of FLOT2 undergoes acetylation modification, and HDAC6 mediates deacetylation at this site, inhibiting proteasomal degradation of FLOT2 and maintaining its stability and tumor-promoting function in nasopharyngeal carcinoma.


Subject(s)
Histone Deacetylase 6 , Membrane Proteins , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Humans , Acetylation , Cell Line, Tumor , Cell Proliferation , HEK293 Cells , Histone Deacetylase 6/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase Inhibitors/pharmacology , Hydroxamic Acids/pharmacology , Lysine/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mutation , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/genetics , Niacinamide/pharmacology , Protein Processing, Post-Translational
10.
Angew Chem Int Ed Engl ; 63(33): e202404849, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38818567

ABSTRACT

We present the inaugural synthesis of a chiral teropyrene achieved through a four-fold alkyne benzannulation catalyzed by InCl3, resulting in good yields. The product underwent thorough characterization using FT-Raman and FT-IR spectroscopies, demonstrating a close agreement with calculated spectra. X-ray crystallographic analysis unveiled a notable twist in the molecule's backbone, with an end-to-end twist angle of 51°, consistent with computational predictions. Experimentally determined enantiomeric inversion barriers revealed a significant energy barrier of 23 kcal/mol, facilitating the isolation of enantiomers for analysis by circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopies. These findings mark significant strides in the synthesis and characterization of chiral teropyrenes, offering insights into their structural and spectroscopic properties.

11.
J Am Chem Soc ; 145(2): 864-872, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36548209

ABSTRACT

"Dynamic" behavior materials with high surface activity and the ability of chemical bond conversion are the frontier materials in the field of renewable energy. The outstanding feature of these materials is that they have adaptive electronic properties that external stimuli can adjust. An original discovery in a new crystalline two-dimensional phosphine-graphdiyne (P-GDY) material is described here. Although the p-π conjugation of most trivalent phosphorus π-systems is insignificant because of the pyramidal configuration, the lone pair electrons of phosphorus atoms participate strongly in the delocalization under the influence of the interlayer van der Waals forces in P-GDY. Due to the dynamically reversible nature of noncovalent interactions (p-π conjugation), P-GDY exhibits a specific adaptive behavior and realizes the responsive reversible transport of a lithium ion by regulating p-π interactions. Our findings would provide the potential to develop a new family of responsive materials with tunable structures.

12.
Opt Express ; 31(9): 14570-14582, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37157318

ABSTRACT

A compact fiber-optic temperature sensor with hybrid interferometers enhanced by the harmonic Vernier effect was proposed, which realized 36.9 times sensitization of the sensing Fabry-Perot interferometer (FPI). The hybrid interferometers configuration of the sensor consists of a FPI and a Michelson interferometer. The proposed sensor is fabricated by splicing the hole-assisted suspended-core fiber (HASCF) to the multi-mode fiber fused with the single-mode fiber, and filling polydimethylsiloxane (PDMS) into the air hole of HASCF. The high thermal expansion coefficient of PDMS improves the temperature sensitivity of the FPI. The harmonic Vernier effect eliminates the limitation of the free spectral range on the magnification factor by detecting the intersection response of internal envelopes, and realizes the secondary sensitization of the traditional Vernier effect. Combing the characteristics of HASCF, PDMS, and first-order harmonic Vernier effect, the sensor exhibits a high detection sensitivity of -19.22 nm/°C. The proposed sensor provides not only a design scheme for compact fiber-optic sensors, but also a new strategy to enhance the optical Vernier effect.

13.
Clin Lab ; 69(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37307123

ABSTRACT

BACKGROUND: Artificial liver support systems (ALSSs) are important approaches for treating acute-on-chronic liver failure (ACLF) patients. Few studies have investigated potential serum therapeutic markers of ACLF patients treated by ALSSs. METHODS: Serum samples were obtained from 57 early to middle stage ACLF patients before and after ALSSs treatment and analyzed by metabonomics. The diagnostic values were evaluated by the area under receiver-operating characteristic curve (AUROC). A retrospective cohort analysis was further employed. RESULTS: Metabonomic study showed that serum ratios of lactate: creatinine in ACLF patients is significantly altered and then restored to normal levels after ALSSs treatment. A retrospective cohort analysis (n = 47) validated that the lactate: creatinine ratio of ACLF patients in the one-month death group remained unchanged after ALSSs treatment, but fell markedly in the survival group with AUROC of 0.682 for diagnosis of survival group from death group, which is a more sensitive measure than measures of prothrombin time activity (PTA) to evaluate the therapeutic effect of ALSSs treatment. CONCLUSIONS: Our results demonstrated the greater the decline in the serum lactate: creatinine ratio with better effective treatments of ALSSs in the ACLF patients with early to middle stage, which presents a potential therapeutic biomarker of ALSSs treatment.


Subject(s)
Acute-On-Chronic Liver Failure , Liver, Artificial , Humans , Creatinine , Retrospective Studies , Lactic Acid
14.
Molecules ; 28(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375413

ABSTRACT

Liquid crystal elastomers (LCEs) are shape-morphing materials whose large and reversible shape transformations are caused by the coupling between the mobile anisotropic properties of liquid crystal (LC) units and the rubber elastic of polymer networks. Their shape-changing behaviors under certain stimuli are largely directed by the LC orientation; therefore, various strategies have been developed to spatially modulate the LC alignments. However, most of these methods are limited as they require complex fabrication technologies or have intrinsic limitations in applicability. To address this issue, programmable complex shape changes in some LCE types, such as polysiloxane side-chain LCEs, thiol-acrylate main-chain LCEs, etc., were achieved by using a mechanical alignment programming process coupled with two-step crosslinking. Here, we report a polysiloxane main-chain LCE with programmable 2- and 3D shape-changing abilities that were created by mechanically programming the polydomain LCE with two crosslinking steps. The resulting LCEs exhibited a reversible thermal-induced shape transformation between the initial and programmed shapes due to the two-way memory between the first and second network structures. Our findings expand on the applications of LCE materials in actuators, soft robotics, and smart structures where arbitrary and easily programmed shape morphing is needed.

15.
Bull Environ Contam Toxicol ; 110(4): 72, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36995456

ABSTRACT

Caffeine has been reported toxic to aquatic organisms, and it frequently occurs at relatively high concentrations in most of surface waters. However, it is difficult to control caffeine pollution because of the lack of Water Quality Criteria (WQC). In this study, species sensitivity distribution method and Log-normal model were applied to derive caffeine WQC as 83.7 ng/L. Meanwhile, concentrations of caffeine in the Nansi Lake basin were detected in 29 sampling sites, with the mean of 99.3 ng/L. The levels of caffeine in tributaries were higher than those in the lakes. In addition, a tied ecological risk assessment method was applied to assess the adverse effect of caffeine on aquatic system. The joint probability curve indicated that ecological risk might exist 3.1% of surface water in the study area, while 5% threshold (HC5) was set up to protect aquatic species. Generally, caffeine posted a low risk to aquatic organisms in the Nansi Lake basin.


Subject(s)
Environmental Monitoring , Water Pollutants, Chemical , Environmental Monitoring/methods , Lakes/analysis , Caffeine , Water Quality , Aquatic Organisms , Risk Assessment/methods , Water Pollutants, Chemical/analysis , China
16.
Plant J ; 108(6): 1704-1720, 2021 12.
Article in English | MEDLINE | ID: mdl-34634158

ABSTRACT

Only a few transcriptional regulators of seed storage protein (SSP) genes have been identified in common wheat (Triticum aestivum L.). Coexpression analysis could be an efficient approach to characterize novel transcriptional regulators at the genome-scale considering the correlated expression between transcriptional regulators and target genes. As the A genome donor of common wheat, Triticum urartu is more suitable for coexpression analysis than common wheat considering the diploid genome and single gene copy. In this work, the transcriptome dynamics in endosperm of T. urartu throughout grain filling were revealed by RNA-Seq analysis. In the coexpression analysis, a total of 71 transcription factors (TFs) from 23 families were found to be coexpressed with SSP genes. Among these TFs, TuNAC77 enhanced the transcription of SSP genes by binding to cis-elements distributed in promoters. The homolog of TuNAC77 in common wheat, TaNAC77, shared an identical function, and the total SSPs were reduced by about 24% in common wheat when TaNAC77 was knocked down. This is the first genome-wide identification of transcriptional regulators of SSP genes in wheat, and the newly characterized transcriptional regulators will undoubtedly expand our knowledge of the transcriptional regulation of SSP synthesis.


Subject(s)
Endosperm/growth & development , Seed Storage Proteins/genetics , Transcription Factors/genetics , Triticum/genetics , Endosperm/genetics , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Genome, Plant , Promoter Regions, Genetic , Triticum/growth & development
17.
Circulation ; 143(1): 45-61, 2021 01 05.
Article in English | MEDLINE | ID: mdl-32988222

ABSTRACT

BACKGROUND: PCSK9 (proprotein convertase subtilisin/kexin 9), mainly secreted by the liver and released into the blood, elevates plasma low-density lipoprotein cholesterol by degrading low-density lipoprotein receptor. Pleiotropic effects of PCSK9 beyond lipid metabolism have been shown. However, the direct effects of PCSK9 on platelet activation and thrombosis, and the underlying mechanisms, as well, still remain unclear. METHODS: We detected the direct effects of PCSK9 on agonist-induced platelet aggregation, dense granule ATP release, integrin αIIbß3 activation, α-granule release, spreading, and clot retraction. These studies were complemented by in vivo analysis of FeCl3-injured mouse mesenteric arteriole thrombosis. We also investigated the underlying mechanisms. Using the myocardial infarction (MI) model, we explored the effects of PCSK9 on microvascular obstruction and infarct expansion post-MI. RESULTS: PCSK9 directly enhances agonist-induced platelet aggregation, dense granule ATP release, integrin αIIbß3 activation, P-selectin release from α-granules, spreading, and clot retraction. In line, PCSK9 enhances in vivo thrombosis in a FeCl3-injured mesenteric arteriole thrombosis mouse model, whereas PCSK9 inhibitor evolocumab ameliorates its enhancing effects. Mechanism studies revealed that PCSK9 binds to platelet CD36 and thus activates Src kinase and MAPK (mitogen-activated protein kinase)-extracellular signal-regulated kinase 5 and c-Jun N-terminal kinase, increases the generation of reactive oxygen species, and activates the p38MAPK/cytosolic phospholipase A2/cyclooxygenase-1/thromboxane A2 signaling pathways downstream of CD36 to enhance platelet activation, as well. Using CD36 knockout mice, we showed that the enhancing effects of PCSK9 on platelet activation are CD36 dependent. It is important to note that aspirin consistently abolishes the enhancing effects of PCSK9 on platelet activation and in vivo thrombosis. Last, we showed that PCSK9 activating platelet CD36 aggravates microvascular obstruction and promotes MI expansion post-MI. CONCLUSIONS: PCSK9 in plasma directly enhances platelet activation and in vivo thrombosis, and MI expansion post-MI, as well, by binding to platelet CD36 and thus activating the downstream signaling pathways. PCSK9 inhibitors or aspirin abolish the enhancing effects of PCSK9, supporting the use of aspirin in patients with high plasma PCSK9 levels in addition to PCSK9 inhibitors to prevent thrombotic complications.


Subject(s)
Blood Platelets/metabolism , CD36 Antigens/metabolism , Myocardial Infarction/metabolism , Platelet Activation/physiology , Proprotein Convertase 9/metabolism , Thrombosis/metabolism , Animals , Aspirin/pharmacology , Aspirin/therapeutic use , Blood Platelets/drug effects , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/drug therapy , PCSK9 Inhibitors , Platelet Activation/drug effects , Platelet Aggregation/physiology , Thrombosis/drug therapy
18.
Opt Express ; 30(25): 45525-45537, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522957

ABSTRACT

An optical fiber surface plasma resonance (SPR) sensor with MMF-TCF-MMF structure was designed to realize intelligent recognition of copper ions (Cu2+), and the selective adsorption sensitization was achieved by plating a layer of Cu2+-imprinted film on the surface of gold film excitation layer. Combining the principle of optical fiber interference and SPR, the proposed sensor realized the detection of the copper ions concentration through measuring the refractive index changes caused by ions adsorption on imprinted film. The Cu2+-imprinted optical fiber SPR sensor can realize the intelligent recognition and detection of copper ions in the complex environment and exhibits a detection sensitivity of -10.05 pm/ppm. The proposed sensor has tremendous development potential in practical application, and provides new ideas for the field of metal ions detection.

19.
BMC Med Imaging ; 22(1): 51, 2022 03 19.
Article in English | MEDLINE | ID: mdl-35305577

ABSTRACT

OBJECTIVE: To investigate and verify the efficiency and effectiveness of a nomogram based on radiomics labels in predicting the treatment of lumbar disc herniation (LDH). METHODS: By reviewing medical records that were analysed over the past three years, clinical and imaging data of 200 lumbar disc patients at the Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine were obtained. The collected cases were randomly divided into a training group (n = 140) and a testing group (n = 60) at a ratio of 7:3. Two radiologists with experience in reading orthopaedics images independently segmented the ROIs. The whole intervertebral disc with the most obvious protrusion in the sagittal plane T2WI lumbar MRI as a mask (ROI) is sketched. The LASSO (Least Absolute Shrinkage And Selection Operator) algorithm was used to filter the features after extracting the radiomics features. The multivariate logistic regression model was used to construct a quantitative imaging Rad­Score for the selected features with nonzero coefficients. The radiomics labels and nomogram were evaluated using the receiver operating characteristic curve (ROC) and the area under the curve (AUC). The calibration curve was used to evaluate the consistency between the nomogram prediction and the actual treatment plan. The DCA decision curve was used to evaluate the clinical applicability of the nomogram. RESULT: Following feature extraction, 11 radiomics features were used to construct the radiomics label for predicting the treatment plan of LDH. A nomogram was then constructed. The AUC was 0.93 (95% CI: 0.90-0.97), with a sensitivity of 89%, a specificity of 91%, a positive predictive value of 92.7%, a negative predictive value of 89.4%, and an accuracy of 91%. The calibration curve showed that there was good consistency between the prediction and the actual observation. The DCA decision curve analysis showed that the nomogram of the imaging group has great potential for clinical application when the risk threshold is between 5 and 72%. CONCLUSION: A nomogram based on radiomics labels has good predictive value for the treatment of LDH and can be used as a reference for clinical decision-making.


Subject(s)
Intervertebral Disc Displacement , Intervertebral Disc , Humans , Intervertebral Disc Displacement/diagnostic imaging , Intervertebral Disc Displacement/therapy , Magnetic Resonance Imaging/methods , Nomograms , Retrospective Studies
20.
Sensors (Basel) ; 22(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36015820

ABSTRACT

In view of the risk of collision with humans or equipment arising from a lack of protection in the operation process of combined support and anchor equipment on the heading face, this paper designs a safety interlock system for combined support and anchor equipment. Firstly, a mathematical model of hydraulic power system control and a valve control system based on feedforward-feedback optimization were established according to the power demand of the combined support and anchor equipment. Secondly, according to the reliability indexes of the safety interlock system, corresponding sensor, logic control and execution modules were designed. Ultrasonic sensor groups were arranged at the key positions of the combined support and anchor equipment to capture the position information in real time when the equipment was moving. Thus, the pump-valve hydraulic system was controlled through closed-loop feedback. The experimental results show that the safety interlock system of the combined support and anchor equipment can adjust the revolving speed of the permanent magnet synchronous motor (PMSM) in real time according to the distance from the obstacle, so as to control the pump outlet flow, and then perform interlocking safety control of the hydraulic cylinder's movement speed. The system can effectively prevent damage to the surrounding equipment or personnel arising from equipment malfunction.


Subject(s)
Magnets , Models, Theoretical , Equipment Design , Feedback , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL