Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38083647

ABSTRACT

Surface electromyography (sEMG) is a commonly used technique for the non-invasive measurement of muscle activity. However, the traditional electrodes used for sEMG often have limitations regarding their long-term wearability. This study explored the feasibility of a wearable platform using a tattoo-like epidermal electrode (e-tattoo) for multi-day sEMG monitoring. Our sEMG e-tattoo provided stable and reliable sEMG signals over three days of application comparable to conventional gel electrodes. In addition, the e-tattoo has great resistance to motion artifacts and, therefore, maintains a high signal-to-noise ratio (SNR) and signal-to-motion ratio (SMR) during dynamic activities such as cycling. This robust wearable platform opens up new avenues for developing future wearable sEMG devices and advancing dynamic muscle fatigue research.Clinical relevance- The proposed wearable sEMG system can provide continuous and non-invasive monitoring of muscle activity, providing insights for improving rehabilitation and EMG-based prosthesis development for patients.


Subject(s)
Tattooing , Wearable Electronic Devices , Humans , Electromyography/methods , Electrodes , Muscle Fatigue
2.
Nat Commun ; 13(1): 6604, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36329038

ABSTRACT

Electrodermal activity (EDA) is a popular index of mental stress. State-of-the-art EDA sensors suffer from obstructiveness on the palm or low signal fidelity off the palm. Our previous invention of sub-micron-thin imperceptible graphene e-tattoos (GET) is ideal for unobstructive EDA sensing on the palm. However, robust electrical connection between ultrathin devices and rigid circuit boards is a long missing component for ambulatory use. To minimize the well-known strain concentration at their interfaces, we propose heterogeneous serpentine ribbons (HSPR), which refer to a GET serpentine partially overlapping with a gold serpentine without added adhesive. A fifty-fold strain reduction in HSPR vs. heterogeneous straight ribbons (HSTR) has been discovered and understood. The combination of HSPR and a soft interlayer between the GET and an EDA wristband enabled ambulatory EDA monitoring on the palm in free-living conditions. A newly developed EDA event selection policy leveraging unbiased selection of phasic events validated our GET EDA sensor against gold standards.


Subject(s)
Graphite , Tattooing , Galvanic Skin Response , Monitoring, Ambulatory
3.
Science ; 376(6596): 1006-1012, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35617386

ABSTRACT

Temporary postoperative cardiac pacing requires devices with percutaneous leads and external wired power and control systems. This hardware introduces risks for infection, limitations on patient mobility, and requirements for surgical extraction procedures. Bioresorbable pacemakers mitigate some of these disadvantages, but they demand pairing with external, wired systems and secondary mechanisms for control. We present a transient closed-loop system that combines a time-synchronized, wireless network of skin-integrated devices with an advanced bioresorbable pacemaker to control cardiac rhythms, track cardiopulmonary status, provide multihaptic feedback, and enable transient operation with minimal patient burden. The result provides a range of autonomous, rate-adaptive cardiac pacing capabilities, as demonstrated in rat, canine, and human heart studies. This work establishes an engineering framework for closed-loop temporary electrotherapy using wirelessly linked, body-integrated bioelectronic devices.


Subject(s)
Absorbable Implants , Cardiac Pacing, Artificial , Pacemaker, Artificial , Postoperative Care , Wireless Technology , Animals , Dogs , Heart Rate , Humans , Postoperative Care/instrumentation , Rats
SELECTION OF CITATIONS
SEARCH DETAIL