Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(18): 4772-4783.e15, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34388390

ABSTRACT

Throughout development and aging, human cells accumulate mutations resulting in genomic mosaicism and genetic diversity at the cellular level. Mosaic mutations present in the gonads can affect both the individual and the offspring and subsequent generations. Here, we explore patterns and temporal stability of clonal mosaic mutations in male gonads by sequencing ejaculated sperm. Through 300× whole-genome sequencing of blood and sperm from healthy men, we find each ejaculate carries on average 33.3 ± 12.1 (mean ± SD) clonal mosaic variants, nearly all of which are detected in serial sampling, with the majority absent from sampled somal tissues. Their temporal stability and mutational signature suggest origins during embryonic development from a largely immutable stem cell niche. Clonal mosaicism likely contributes a transmissible, predicted pathogenic exonic variant for 1 in 15 men, representing a life-long threat of transmission for these individuals and a significant burden on human population health.


Subject(s)
Growth and Development , Mosaicism , Spermatozoa/metabolism , Adolescent , Aging/blood , Alleles , Clone Cells , Cohort Studies , Humans , Male , Models, Biological , Mutation/genetics , Risk Factors , Time Factors , Young Adult
2.
Nature ; 629(8011): 384-392, 2024 May.
Article in English | MEDLINE | ID: mdl-38600385

ABSTRACT

Debate remains around the anatomical origins of specific brain cell subtypes and lineage relationships within the human forebrain1-7. Thus, direct observation in the mature human brain is critical for a complete understanding of its structural organization and cellular origins. Here we utilize brain mosaic variation within specific cell types as distinct indicators for clonal dynamics, denoted as cell-type-specific mosaic variant barcode analysis. From four hemispheres and two different human neurotypical donors, we identified 287 and 780 mosaic variants, respectively, that were used to deconvolve clonal dynamics. Clonal spread and allele fractions within the brain reveal that local hippocampal excitatory neurons are more lineage-restricted than resident neocortical excitatory neurons or resident basal ganglia GABAergic inhibitory neurons. Furthermore, simultaneous genome transcriptome analysis at both a cell-type-specific and a single-cell level suggests a dorsal neocortical origin for a subgroup of DLX1+ inhibitory neurons that disperse radially from an origin shared with excitatory neurons. Finally, the distribution of mosaic variants across 17 locations within one parietal lobe reveals that restriction of clonal spread in the anterior-posterior axis precedes restriction in the dorsal-ventral axis for both excitatory and inhibitory neurons. Thus, cell-type-resolved somatic mosaicism can uncover lineage relationships governing the development of the human forebrain.


Subject(s)
Cell Lineage , Clone Cells , Mosaicism , Neurons , Prosencephalon , Aged , Female , Humans , Alleles , Cell Lineage/genetics , Clone Cells/cytology , Clone Cells/metabolism , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Hippocampus/cytology , Homeodomain Proteins/metabolism , Neocortex/cytology , Neural Inhibition , Neurons/cytology , Neurons/metabolism , Parietal Lobe/cytology , Prosencephalon/anatomy & histology , Prosencephalon/cytology , Prosencephalon/metabolism , Single-Cell Analysis , Transcriptome/genetics
3.
Nature ; 604(7907): 689-696, 2022 04.
Article in English | MEDLINE | ID: mdl-35444276

ABSTRACT

The structure of the human neocortex underlies species-specific traits and reflects intricate developmental programs. Here we sought to reconstruct processes that occur during early development by sampling adult human tissues. We analysed neocortical clones in a post-mortem human brain through a comprehensive assessment of brain somatic mosaicism, acting as neutral lineage recorders1,2. We combined the sampling of 25 distinct anatomic locations with deep whole-genome sequencing in a neurotypical deceased individual and confirmed results with 5 samples collected from each of three additional donors. We identified 259 bona fide mosaic variants from the index case, then deconvolved distinct geographical, cell-type and clade organizations across the brain and other organs. We found that clones derived after the accumulation of 90-200 progenitors in the cerebral cortex tended to respect the midline axis, well before the anterior-posterior or ventral-dorsal axes, representing a secondary hierarchy following the overall patterning of forebrain and hindbrain domains. Clones across neocortically derived cells were consistent with a dual origin from both dorsal and ventral cellular populations, similar to rodents, whereas the microglia lineage appeared distinct from other resident brain cells. Our data provide a comprehensive analysis of brain somatic mosaicism across the neocortex and demonstrate cellular origins and progenitor distribution patterns within the human brain.


Subject(s)
Clone Cells , Mosaicism , Neocortex , Cell Lineage , Cells, Cultured , Humans , Microglia , Neocortex/cytology , Neocortex/growth & development
4.
J Cell Mol Med ; 28(7): e18154, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38494840

ABSTRACT

Dopamine (DA) is a neurotransmitter synthesized in the human body that acts on multiple organs throughout the body, reaching them through the blood circulation. Neurotransmitters are special molecules that act as messengers by binding to receptors at chemical synapses between neurons. As ligands, they mainly bind to corresponding receptors on central or peripheral tissue cells. Signalling through chemical synapses is involved in regulating the activities of various body systems. Lack of DA or a decrease in DA levels in the brain can lead to serious diseases such as Parkinson's disease, schizophrenia, addiction and attention deficit disorder. It is widely recognized that DA is closely related to neurological diseases. As research on the roles of brain-gut peptides in human physiology and pathology has deepened in recent years, the regulatory role of neurotransmitters in digestive system diseases has gradually attracted researchers' attention, and research on DA has expanded to the field of digestive system diseases. This review mainly elaborates on the research progress on the roles of DA and DRs related to digestive system diseases. Starting from the biochemical and pharmacological properties of DA and DRs, it discusses the therapeutic value of DA- and DR-related drugs for digestive system diseases.


Subject(s)
Digestive System Diseases , Parkinson Disease , Humans , Dopamine/metabolism , Receptors, Dopamine , Parkinson Disease/metabolism , Neurotransmitter Agents
5.
Trends Genet ; 37(10): 890-902, 2021 10.
Article in English | MEDLINE | ID: mdl-34158173

ABSTRACT

While sperm mosaicism has few consequences for men, the offspring and future generations are unwitting recipients of gonadal cell mutations, often yielding severe disease. Recent studies, fueled by emergent technologies, show that sperm mosaicism is a common source of de novo mutations (DNMs) that underlie severe pediatric disease as well as human genetic diversity. Sperm mosaicism can be divided into three types: Type I arises during sperm meiosis and is non-age dependent; Type II arises in spermatogonia and increases as men age; and Type III arises during paternal embryogenesis, spreads throughout the body, and contributes stably to sperm throughout life. Where Types I and II confer little risk of recurrence, Type III may confer identifiable risk to future offspring. These mutations are likely to be the single largest contributor to human genetic diversity. New sequencing approaches may leverage this framework to evaluate and reduce disease risk for future generations.


Subject(s)
Disease/genetics , Genomics , Mosaicism , Mutation , Spermatozoa/metabolism , Humans , Male , Spermatogonia/metabolism
6.
N Engl J Med ; 385(14): 1292-1301, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34587386

ABSTRACT

BACKGROUND: Structural birth defects occur in approximately 3% of live births; most such defects lack defined genetic or environmental causes. Despite advances in surgical approaches, pharmacologic prevention remains largely out of reach. METHODS: We queried worldwide databases of 20,248 families that included children with neurodevelopmental disorders and that were enriched for parental consanguinity. Approximately one third of affected children in these families presented with structural birth defects or microcephaly. We performed exome or genome sequencing of samples obtained from the children, their parents, or both to identify genes with biallelic pathogenic or likely pathogenic mutations present in more than one family. After identifying disease-causing variants, we generated two mouse models, each with a pathogenic variant "knocked in," to study mechanisms and test candidate treatments. We administered a small-molecule Wnt agonist to pregnant animals and assessed their offspring. RESULTS: We identified homozygous mutations in WLS, which encodes the Wnt ligand secretion mediator (also known as Wntless or WLS) in 10 affected persons from 5 unrelated families. (The Wnt ligand secretion mediator is essential for the secretion of all Wnt proteins.) Patients had multiorgan defects, including microcephaly and facial dysmorphism as well as foot syndactyly, renal agenesis, alopecia, iris coloboma, and heart defects. The mutations affected WLS protein stability and Wnt signaling. Knock-in mice showed tissue and cell vulnerability consistent with Wnt-signaling intensity and individual and collective functions of Wnts in embryogenesis. Administration of a pharmacologic Wnt agonist partially restored embryonic development. CONCLUSIONS: Genetic variations affecting a central Wnt regulator caused syndromic structural birth defects. Results from mouse models suggest that what we have named Zaki syndrome is a potentially preventable disorder. (Funded by the National Institutes of Health and others.).


Subject(s)
Abnormalities, Multiple/genetics , Congenital Abnormalities/genetics , Genetic Pleiotropy , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Receptors, G-Protein-Coupled/genetics , Wnt Proteins/metabolism , Animals , Disease Models, Animal , Fibroblasts/metabolism , Gene Knock-In Techniques , Genes, Recessive , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Transgenic , Pedigree , Phenotype , Receptors, G-Protein-Coupled/metabolism , Syndrome , Wnt Signaling Pathway
7.
BMC Plant Biol ; 24(1): 72, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38267871

ABSTRACT

Melatonin plays important roles in multiple stress responses; however, the downstream signaling pathway and molecular mechanism remain unclear. This study aimed to elucidate the transcriptional regulation of melatonin-induced salt stress tolerance in Phaseolus vulgaris L. and identify the key downstream transcription factors of melatonin through transcriptomic and metabolomic analyses. The melatonin-induced transcriptional network of hormones, transcription factors, and functional genes was established under both control and stress conditions. Among these, eight candidate transcription factors were identified via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, one gene related to transmembrane transport of salts (Phvul.004G177300). These genes may play a role in maintaining the cell structure and excreting sodium ions outside the cell or transporting them to the vacuoles for storage. Melatonin regulates the Phvul.009G210332 gene and metabolites C05642 (N-acetyl-N-2-formyl-5-methoxycanurine), C05643 (6-hydroxymelatonin), C05660 (5-methoxyindoleacetic acid) involved in tryptophan metabolism. The metabolites C05642 and C05643 were identified as decomposition products of tryptophan, indicating that exogenous melatonin entered the P. vulgaris tissue and was metabolized. Melatonin promotes the synthesis and metabolism of tryptophan, which is crucial to plant metabolism, growth, maintenance, and repair.


Subject(s)
Melatonin , Phaseolus , Phaseolus/genetics , Tryptophan , Gene Expression Profiling , Salt Stress , Transcription Factors
8.
Cell Biochem Funct ; 42(2): e3968, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38439590

ABSTRACT

Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic ß cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Diabetic Nephropathies , MicroRNAs , Humans , Pyroptosis , Diabetic Cardiomyopathies/genetics , Diabetic Nephropathies/genetics , RNA, Untranslated/genetics , MicroRNAs/genetics , Diabetes Mellitus/genetics
9.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 535-541, 2024 May 20.
Article in Zh | MEDLINE | ID: mdl-38948294

ABSTRACT

Genomic mosaicism arising from mosaic variants is a phenomenon that describes the presence of a cell or cell populations with different genome compositions from the germline cells of an individual. It comprises all types of genetic variants. A large proportion of childhood genetic disorders are defined as being de novo, meaning that the disease-causing mutations are only detected in the proband, not in any of the parents. Population studies show that 80% of the de novo mutations arise from the paternal haplotype, that is, from paternal sperm mosaicism. This review provides a summary of the types and detection strategies of sperm mosaicism. In addition, it provides discussions on how recent studies demonstrated that genomic mosaic mutations in parents, especially those in the paternal sperms, could be inherited by the offspring and cause childhood disorders. According to the previous findings of the author's research team, sperm mosaicism derived from early embryogenesis and primordial germ cell stages can explain 5% to 20% of the de novo mutations related to clinical phenotypes and can serve as an important predictor of both rare and complex disorders. Sperm mosaicism shows great potential for clinical genetic diagnosis and consultations. Based on the published literature, the author suggests that, large-scale screening for de novo sperm mosaic mutations and population-based genetic screening should be conducted in future studies, which will greatly enhance the risk assessment in the offspring and effectively improve the genetic health at the population level. Implementation of direct sperm detection for de novo mutations will significantly increase the efficiency of the stratification of patient cohorts and improve recurrence risk assessment for future births. Future research in the field should be focused on the impact of environmental and lifestyle factors on the health of the offspring through sperms and their modeling of mutation signatures. In addition, targeted in vitro modeling of sperm mutations will also be a promising direction.


Subject(s)
Mosaicism , Spermatozoa , Humans , Male , Mutation , Genetic Testing , Child
10.
J Cell Mol Med ; 27(18): 2631-2642, 2023 09.
Article in English | MEDLINE | ID: mdl-37638698

ABSTRACT

Ion channels and transporters are ubiquitously expressed on cell membrane, which involve in a plethora of physiological process such as contraction, neurotransmission, secretion and so on. Ion channels and transporters is of great importance to maintaining membrane potential homeostasis, which is essential to absorption of nutrients in gastrointestinal tract. Most of nutrients are electrogenic and require ion channels and transporters to absorb. This review summarizes the latest research on the role of ion channels and transporters in regulating nutrient uptake such as K+ channels, Ca2+ channels and ion exchangers. Revealing the mechanism of ion channels and transporters associated with nutrient uptake will be helpful to provide new methods to diagnosis and find potential targets for diseases like diabetes, inflammatory bowel diseases, etc. Even though some of study still remain ambiguous and in early stage, we believe that ion channels and transporters will be novel therapeutic targets in the future.


Subject(s)
Ion Channels , Physiological Phenomena , Biological Transport , Homeostasis , Nutrients
11.
Stroke ; 54(5): 1357-1366, 2023 05.
Article in English | MEDLINE | ID: mdl-36912139

ABSTRACT

BACKGROUND: Cerebral venous thrombosis (CVT) is a rare cerebrovascular disease. Routine brain magnetic resonance imaging is commonly used to diagnose CVT. This study aimed to develop and evaluate a novel deep learning (DL) algorithm for detecting CVT using routine brain magnetic resonance imaging. METHODS: Routine brain magnetic resonance imaging, including T1-weighted, T2-weighted, and fluid-attenuated inversion recovery images of patients suspected of CVT from April 2014 through December 2019 who were enrolled from a CVT registry, were collected. The images were divided into 2 data sets: a development set and a test set. Different DL algorithms were constructed in the development set using 5-fold cross-validation. Four radiologists with various levels of expertise independently read the images and performed diagnosis within the test set. The diagnostic performance on per-patient and per-segment diagnosis levels of the DL algorithms and radiologist's assessment were evaluated and compared. RESULTS: A total of 392 patients, including 294 patients with CVT (37±14 years, 151 women) and 98 patients without CVT (42±15 years, 65 women), were enrolled. Of these, 100 patients (50 CVT and 50 non-CVT) were randomly assigned to the test set, and the other 292 patients comprised the development set. In the test set, the optimal DL algorithm (multisequence multitask deep learning algorithm) achieved an area under the curve of 0.96, with a sensitivity of 96% (48/50) and a specificity of 88% (44/50) on per-patient diagnosis level, as well as a sensitivity of 88% (129/146) and a specificity of 80% (521/654) on per-segment diagnosis level. Compared with 4 radiologists, multisequence multitask deep learning algorithm showed higher sensitivity both on per-patient (all P<0.05) and per-segment diagnosis levels (all P<0.001). CONCLUSIONS: The CVT-detected DL algorithm herein improved diagnostic performance of routine brain magnetic resonance imaging, with high sensitivity and specificity, which provides a promising approach for detecting CVT.


Subject(s)
Deep Learning , Intracranial Thrombosis , Venous Thrombosis , Humans , Female , Magnetic Resonance Imaging/methods , Brain/pathology , Intracranial Thrombosis/diagnosis , Algorithms , Venous Thrombosis/diagnosis
12.
BMC Plant Biol ; 23(1): 85, 2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36759761

ABSTRACT

Cold temperatures can be detrimental to crop survival and productivity. Breeding progress can be improved by understanding the molecular basis of low temperature tolerance. We investigated the key routes and critical metabolites related to low temperature resistance in cold-tolerant and -sensitive common bean cultivars 120 and 093, respectively. Many potential genes and metabolites implicated in major metabolic pathways during the chilling stress response were identified through transcriptomics and metabolomics research. Under chilling stress, the expression of many genes involved in lipid, amino acid, and flavonoid metabolism, as well as metabolite accumulation increased in the two bean types. Malondialdehyde (MDA) content was lower in 120 than in 093. Regarding amino acid metabolism, 120 had a higher concentration of acidic amino acids than 093, whereas 093 had a higher concentration of basic amino acids. Methionine accumulation was clearly higher in 120 than in 093. In addition, 120 had a higher concentration of many types of flavonoids than 093. Flavonoids, methionine and malondialdehyde could be used as biomarkers of plant chilling injury. Transcriptome analysis of hormone metabolism revealed considerably greater, expression of abscisic acid (ABA), gibberellin (GA), and jasmonic acid (JA) in 093 than in 120 during chilling stress, indicating that hormone regulation modes in 093 and 120 were different. Thus, chilling stress tolerance is different between 093 and 120 possibly due to transcriptional and metabolic regulation.


Subject(s)
Phaseolus , Phaseolus/genetics , Phaseolus/metabolism , Cold-Shock Response/genetics , Transcriptome , Plant Breeding , Gene Expression Profiling , Metabolomics , Cold Temperature , Flavonoids/metabolism , Amino Acids/metabolism , Methionine/metabolism , Hormones/metabolism , Gene Expression Regulation, Plant
13.
BMC Med ; 21(1): 155, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081442

ABSTRACT

BACKGROUND: Germline mosaicisms could be inherited to offspring, which considered as "de novo" in most cases. Paternal germline MECP2 mosaicism has been reported in fathers of girls with Rett syndrome (RTT) previously. For further study, we focused on MECP2 germline mosaicism in males, not only RTT fathers. METHODS: Thirty-two fathers of RTT girls with MECP2 pathogenic mutations and twenty-five healthy adult males without history and family history of RTT or other genetic disorders were recruited. Sperm samples were collected and ten MECP2 hotspot mutations were detected by micro-droplet digital PCR (mDDPCR). And routine semen test was performed at the same time if the sample was sufficient. Additionally, blood samples were also detected for those with sperm MECP2 mosaicisms. RESULTS: Nine fathers with RTT daughters (28.1%, 9/32) were found to have MECP2 mosaicism in their sperm samples, with the mutant allele fractions (MAFs) ranging from 0.05% to 7.55%. Only one father with MECP2 c.806delG germline mosaicism (MAF 7.55%) was found to have mosaicism in the blood sample, with the MAF was 0.28%. In the group of healthy adult males, MECP2 mosaicism was found in 7 sperm samples (28.0%, 7/25), with the MAFs ranging from 0.05% to 0.18%. None of the healthy adult males with MECP2 germline mosaicisms were found with MECP2 mosaicism in blood samples. There were no statistical differences in age, or the incidence of asthenospermia between fathers with RTT daughters and healthy adult males with MECP2 germline mosaicisms. Additionally, there was no linear correlation between MAFs of MECP2 mosaicisms and the age of males with germline MECP2 mosaicisms. CONCLUSIONS: Germline MECP2 mosaicism could be found not only in fathers with RTT daughters but also in healthy adult males without family history of RTT. As germline mosaic mutations may be passed on to offspring which commonly known as "de novo", more attention should be paid to germline mosaicism, especially in families with a proband diagnosed with genetic disorders.


Subject(s)
Rett Syndrome , Adult , Female , Humans , Male , Fathers , Germ Cells , Mosaicism , Mutation , Phenotype , Rett Syndrome/genetics , Semen
14.
J Hum Genet ; 68(2): 73-80, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36482122

ABSTRACT

AIM: To investigate the occurrence of mosaicism in epilepsy probands and their parents using amplicon-based deep sequencing (ADS). METHODS: Patients were recruited from the outpatient of Peking University First Hospital. Two hundred and sixty-four probands with pathogenic variants tested by next-generation sequencing (NGS) were enrolled. RESULTS: Mosaic variants were detected in seventeen disease-associated genes from 20 probands, 5 paternal, and 6 maternal parents. The frequency of mosaicism was 11.74% (31/264). Mosaicism in 11 genes was identified from 20 probands with the mutant allelic fractions (MAFs) of 12.95-38.00% in autosomal dominant genes. Five paternal mosaicisms were identified in genes with a MAF of 6.30-20.99%, and six maternal mosaic individuals with a MAF of 2.07-21.90%. Only four mosaic parents had milder seizure history. The affected sibling had the same phenotype consistent with that of the proband, who inherited the variant of SLC1A2 or STXBP1 from their unaffected mosaic mothers, respectively. INTERPRETATION: Mosaic phenomenon is not rare in families with epilepsy. Phenotypes of mosaic parents were milder or normal. Mosaicism detection is helpful to identify the mutation origin and it provides a theoretical basis for prenatal diagnosis of family reproduction. ADS is a reliable way of mosaicism detection for clinical application.


Subject(s)
Epilepsy , Mosaicism , Humans , Epilepsy/genetics , Mutation , Genomics , High-Throughput Nucleotide Sequencing
15.
Neuropathol Appl Neurobiol ; 49(4): e12924, 2023 08.
Article in English | MEDLINE | ID: mdl-37461203

ABSTRACT

AIMS: Synaptic strength depends strongly on the subsynaptic organisation of presynaptic transmitter release and postsynaptic receptor densities, and their alterations are expected to underlie pathologies. Although synaptic dysfunctions are common pathogenic traits of Alzheimer's disease (AD), it remains unknown whether synaptic protein nano-organisation is altered in AD. Here, we systematically characterised the alterations in the subsynaptic organisation in cellular and mouse models of AD. METHODS: We used immunostaining and super-resolution stochastic optical reconstruction microscopy imaging to quantitatively examine the synaptic protein nano-organisation in both Aß1-42-treated neuronal cultures and cortical sections from a mouse model of AD, APP23 mice. RESULTS: We found that Aß1-42-treatment of cultured hippocampal neurons decreased the synaptic retention of postsynaptic scaffolds and receptors and disrupted their nanoscale alignment to presynaptic transmitter release sites. In cortical sections, we found that while GluA1 receptors in wild-type mice were organised in subsynaptic nanoclusters with high local densities, receptors in APP23 mice distributed more homogeneously within synapses. This reorganisation, together with the reduced overall receptor density, led to reduced glutamatergic synaptic transmission. Meanwhile, the transsynaptic alignment between presynaptic release-guiding RIM1/2 and postsynaptic scaffolding protein PSD-95 was reduced in APP23 mice. Importantly, these reorganisations were progressive with age and were more pronounced in synapses in close vicinity of Aß plaques with dense cores. CONCLUSIONS: Our study revealed a spatiotemporal-specific reorganisation of synaptic nanostructures in AD and identifies dense-core amyloid plaques as the major local inductor in APP23 mice.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Synapses/pathology , Neurons/pathology , Synaptic Transmission/physiology , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Mice, Transgenic
16.
Mol Cell Biochem ; 478(6): 1397-1410, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36378463

ABSTRACT

The inflammasome is a multimeric protein complex located in the cytoplasm that is activated by many factors and subsequently promotes the release of proinflammatory factors such as interleukin (IL)-1ß and IL-18, resulting in a series of inflammatory responses that ultimately lead to the occurrence of various diseases. The Nod-like receptor protein 3 (NLRP3) inflammasome is the most characteristic type and the most widely studied among many inflammasomes. Activation of the NLRP3 inflammasome is closely related to the occurrence of many diseases, such as Alzheimer's disease. At present, a large number of studies have focused on the mechanisms underlying the activation of the NLRP3 inflammasome. Plenty of articles have reported the activation of the NLRP3 inflammasome by various ions, such as K+ and Na+ reflux and Ca2+ influx. However, few articles have reviewed the effects of various ion channels on the activation of the NLRP3 inflammasome and the relationship between the diseases caused by these proteins. This article mainly summarizes the relationship between intracellular and extracellular ion activities and ion channels and the activation of the NLRP3 inflammasome. We also provide a general summary of the diseases of each system caused by NLRP3 activation. We hope that more research will provide options for the treatment of diseases driven by the NLRP3 inflammasome.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Proteins , Interleukin-1beta/metabolism
17.
Mol Breed ; 43(3): 15, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37313298

ABSTRACT

Anthocyanin makes snap bean (Phaseolus vulgaris L.) pods purple, which helps seed dispersal and protects against environmental stress. In this study, we characterised the snap bean purple mutant pv-pur, which has purple cotyledon, hypocotyl, stem, leaf vein, flower and pod tissues. Total anthocyanin, delphinidin and malvidin levels in mutant pods were significantly higher than in wild-type plants. We constructed two populations for fine mapping of the PV-PUR purple mutation gene, located in the 243.9-kb region of chromosome 06. We identified Phvul.006g018800.3, encoding F3'5'H, as a candidate gene for PV-PUR. Six single-base mutations occurred in the coding region of this gene, altering protein structure. PV-PUR and pv-pur genes were transferred into Arabidopsis, respectively. Compared with the wild-type, the leaf base and internode of T-PV-PUR plant were purple, and the phenotype of T-pv-pur plant remained unchanged, which verified the function of the mutant gene. The results demonstrated that PV-PUR is a crucial gene for anthocyanin biosynthesis in snap bean, resulting in purple colouration. The findings lay a foundation for future breeding and improvement of snap bean. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01362-8.

18.
Brain ; 145(4): 1551-1563, 2022 05 24.
Article in English | MEDLINE | ID: mdl-34694367

ABSTRACT

The major spliceosome mediates pre-mRNA splicing by recognizing the highly conserved sequences at the 5' and 3' splice sites and the branch point. More than 150 proteins participate in the splicing process and are organized in the spliceosomal A, B, and C complexes. FRA10AC1 is a peripheral protein of the spliceosomal C complex and its ortholog in the green alga facilitates recognition or interaction with splice sites. We identified biallelic pathogenic variants in FRA10AC1 in five individuals from three consanguineous families. The two unrelated Patients 1 and 2 with loss-of-function variants showed developmental delay, intellectual disability, and no speech, while three siblings with the c.494_496delAAG (p.Glu165del) variant had borderline to mild intellectual disability. All patients had microcephaly, hypoplasia or agenesis of the corpus callosum, growth retardation, and craniofacial dysmorphism. FRA10AC1 transcripts and proteins were drastically reduced or absent in fibroblasts of Patients 1 and 2. In a heterologous expression system, the p.Glu165del variant impacts intrinsic stability of FRA10AC1 but does not affect its nuclear localization. By co-immunoprecipitation, we found ectopically expressed HA-FRA10AC1 in complex with endogenous DGCR14, another component of the spliceosomal C complex, while the splice factors CHERP, NKAP, RED, and SF3B2 could not be co-immunoprecipitated. Using an in vitro splicing reporter assay, we did not obtain evidence for FRA10AC1 deficiency to suppress missplicing events caused by mutations in the highly conserved dinucleotides of 5' and 3' splice sites in an in vitro splicing assay in patient-derived fibroblasts. Our data highlight the importance of specific peripheral spliceosomal C complex proteins for neurodevelopment. It remains possible that FRA10AC1 may have other and/or additional cellular functions, such as coupling of transcription and splicing reactions.


Subject(s)
Growth Disorders , Intellectual Disability , Microcephaly , Neurodevelopmental Disorders , Nuclear Proteins , DNA-Binding Proteins/genetics , Growth Disorders/genetics , Humans , Intellectual Disability/genetics , Membrane Proteins/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Nuclear Proteins/genetics , RNA Splice Sites , RNA-Binding Proteins/genetics , Repressor Proteins/genetics
19.
Exp Cell Res ; 417(2): 113227, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35644413

ABSTRACT

Chili pepper and its major active compound capsaicin have long been used not only a daily food additive but also medication worldwide. Like in other human organs and systems, capsaicin has multiple actions in gastrointestinal (GI) physiology and pathology. Numerous studies have revealed that capsaicin acts on GI tract in TRPV1-dependent and -independent manners, mostly depending on its consumption concentrations. In this review, we will focus on the beneficial role of capsaicin in GI tract, a less highlighted aspect, in particular how dietary capsaicin affects GI health, the mechanisms of actions and its preventive/therapeutic potentials to several GI diseases. Dietary capsaicin affects GI tract not only via TRPV1-derpendent and independent manners, but also via acute and chronic effects. Although high dose intake of dietary capsaicin is harmful to human health sometimes, current literatures suggest that appropriate dose intake is likely beneficial to GI health and is preventive/therapeutic to GI disease in most cases as well. With extensive and intensive studies on its GI actions, capsaicin, as a daily consumed food additive, has potential to become a safe drug for the treatment of several GI diseases.


Subject(s)
Capsaicin , Gastrointestinal Tract , Capsaicin/pharmacology , Capsaicin/therapeutic use , Diet , Food Additives/pharmacology , Humans , TRPV Cation Channels/physiology
20.
Am J Physiol Cell Physiol ; 322(3): C496-C507, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35108117

ABSTRACT

Nucleus pulposus cell (NPC) dysfunction is considered as an important event related to intervertebral disc degeneration (IVDD). In the present study, tandem mass spectrometry (TMT) was used to detect total protein expression of nucleus pulposus (NP) in patients with IVDD and healthy controls. Bioinformatic analysis was performed to identify differentially expressed proteins that may be involved in the degeneration of NP. The results show that Rac1 may be a key protein involved in the degeneration of NP via Wnt/ß-catenin pathway activation. We investigated the influence of Rac1 on IVDD degeneration and associated mechanisms. Rac1 expression increased in interleukin (IL)-1ß-stimulated human NPCs, consistent with the results of TMT. The Rac1 inhibitor NSC23766 alleviated the degeneration of NPCs in vitro. Furthermore, Rac1 activated Wnt/ß-catenin signaling, and the inhibition of this pathway significantly ameliorated the Rac1-mediated degenerative phenotype. NSC23766 exerted protective effects on IVDD in a puncture rat model. Taken together, these data suggest that Rac1 inhibition can delay NPC degeneration, probably through the regulation of the Wnt/ß-catenin pathway. This study has the potential to advance understanding of the mechanism of occurrence of degenerative NP tissues and to provide novel strategies for slowing IVDD progression.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Animals , Humans , Intervertebral Disc Degeneration/genetics , Nucleus Pulposus/metabolism , Rats , Wnt Signaling Pathway , beta Catenin/metabolism , rac1 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL