Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 723
Filter
Add more filters

Publication year range
1.
Immunity ; 54(3): 454-467.e6, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33561388

ABSTRACT

Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.


Subject(s)
Anticoagulants/therapeutic use , Caspases/metabolism , Heparin/therapeutic use , Macrophages/immunology , Sepsis/drug therapy , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Caspases/genetics , Cell Line , Female , Glucuronidase/genetics , Glucuronidase/metabolism , Glycocalyx/metabolism , HMGB1 Protein/metabolism , Humans , Immunomodulation , Lipopolysaccharides/metabolism , Male , Mice , Mice, Knockout , Middle Aged , Sepsis/mortality , Survival Analysis , Young Adult
2.
Immunity ; 51(6): 983-996.e6, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31836429

ABSTRACT

Excessive activation of the coagulation system leads to life-threatening disseminated intravascular coagulation (DIC). Here, we examined the mechanisms underlying the activation of coagulation by lipopolysaccharide (LPS), the major cell-wall component of Gram-negative bacteria. We found that caspase-11, a cytosolic LPS receptor, activated the coagulation cascade. Caspase-11 enhanced the activation of tissue factor (TF), an initiator of coagulation, through triggering the formation of gasdermin D (GSDMD) pores and subsequent phosphatidylserine exposure, in a manner independent of cell death. GSDMD pores mediated calcium influx, which induced phosphatidylserine exposure through transmembrane protein 16F, a calcium-dependent phospholipid scramblase. Deletion of Casp11, ablation of Gsdmd, or neutralization of phosphatidylserine or TF prevented LPS-induced DIC. In septic patients, plasma concentrations of interleukin (IL)-1α and IL-1ß, biomarkers of GSDMD activation, correlated with phosphatidylserine exposure in peripheral leukocytes and DIC scores. Our findings mechanistically link immune recognition of LPS to coagulation, with implications for the treatment of DIC.


Subject(s)
Caspases, Initiator/metabolism , Disseminated Intravascular Coagulation/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/metabolism , Phosphate-Binding Proteins/metabolism , Phosphatidylserines/metabolism , Thromboplastin/metabolism , Animals , Blood Coagulation/physiology , Caspases, Initiator/genetics , Cell Line, Tumor , Endotoxemia/pathology , Enzyme Activation , HT29 Cells , HeLa Cells , Humans , Interleukin-1alpha/blood , Interleukin-1beta/blood , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphate-Binding Proteins/genetics , Pyroptosis/physiology , Signal Transduction/physiology
3.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38411947

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Subject(s)
Coronavirus Infections , Interferons , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Autophagy , Cell Line , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Diarrhea/veterinary , Interferons/metabolism , Nucleocapsid Proteins/metabolism , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/metabolism , Virus Replication
4.
Stem Cells ; 42(6): 567-579, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38469899

ABSTRACT

Wnt/ß-catenin signaling plays a crucial role in the migration of mesenchymal stem cells (MSCs). However, our study has revealed an intriguing phenomenon where Dickkopf-1 (DKK1), an inhibitor of Wnt/ß-catenin signaling, promotes MSC migration at certain concentrations ranging from 25 to 100 ng/mL while inhibiting Wnt3a-induced MSC migration at a higher concentration (400 ng/mL). Interestingly, DKK1 consistently inhibited Wnt3a-induced phosphorylation of LRP6 at all concentrations. We further identified cytoskeleton-associated protein 4 (CKAP4), another DKK1 receptor, to be localized on the cell membrane of MSCs. Overexpressing the CRD2 deletion mutant of DKK1 (ΔCRD2), which selectively binds to CKAP4, promoted the accumulation of active ß-catenin (ABC), the phosphorylation of AKT (Ser473) and the migration of MSCs, suggesting that DKK1 may activate Wnt/ß-catenin signaling via the CKAP4/PI3K/AKT cascade. We also investigated the effect of the CKAP4 intracellular domain mutant (CKAP4-P/A) that failed to activate the PI3K/AKT pathway and found that CKAP4-P/A suppressed DKK1 (100 ng/mL)-induced AKT activation, ABC accumulation, and MSC migration. Moreover, CKAP4-P/A significantly weakened the inhibitory effects of DKK1 (400 ng/mL) on Wnt3a-induced MSC migration and Wnt/ß-catenin signaling. Based on these findings, we propose that DKK1 may activate the PI3K/AKT pathway via CKAP4 to balance the inhibitory effect on Wnt/ß-catenin signaling and thus regulate Wnt3a-induced migration of MSCs. Our study reveals a previously unrecognized role of DKK1 in regulating MSC migration, highlighting the importance of CKAP4 and PI3K/AKT pathways in this process.


Subject(s)
Cell Movement , Intercellular Signaling Peptides and Proteins , Mesenchymal Stem Cells , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Wnt Signaling Pathway , Wnt3A Protein , Intercellular Signaling Peptides and Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Cell Movement/drug effects , Wnt3A Protein/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Wnt Signaling Pathway/drug effects , Humans , Animals , beta Catenin/metabolism , Phosphorylation/drug effects , Mice , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/genetics
5.
Cell Mol Life Sci ; 81(1): 83, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341383

ABSTRACT

BACKGROUND AND AIMS: Due to a lack of donor grafts, steatotic livers are used more often for liver transplantation (LT). However, steatotic donor livers are more sensitive to ischemia-reperfusion (IR) injury and have a worse prognosis after LT. Efforts to optimize steatotic liver grafts by identifying injury targets and interventions have become a hot issue. METHODS: Mouse LT models were established, and 4D label-free proteome sequencing was performed for four groups: normal control (NC) SHAM, high-fat (HF) SHAM, NC LT, and HF LT to screen molecular targets for aggravating liver injury in steatotic LT. Expression detection of molecular targets was performed based on liver specimens from 110 donors to verify its impact on the overall survival of recipients. Pharmacological intervention using small-molecule inhibitors on an injury-related target was used to evaluate the therapeutic effect. Transcriptomics and metabolomics were performed to explore the regulatory network and further integrated bioinformatics analysis and multiplex immunofluorescence were adopted to assess the regulation of pathways and organelles. RESULTS: HF LT group represented worse liver function compared with NC LT group, including more apoptotic hepatocytes (P < 0.01) and higher serum transaminase (P < 0.05). Proteomic results revealed that the mitochondrial membrane, endocytosis, and oxidative phosphorylation pathways were upregulated in HF LT group. Fatty acid binding protein 4 (FABP4) was identified as a hypoxia-inducible protein (fold change > 2 and P < 0.05) that sensitized mice to IR injury in steatotic LT. The overall survival of recipients using liver grafts with high expression of FABP4 was significantly worse than low expression of FABP4 (68.5 vs. 87.3%, P < 0.05). Adoption of FABP4 inhibitor could protect the steatotic liver from IR injury during transplantation, including reducing hepatocyte apoptosis, reducing serum transaminase (P < 0.05), and alleviating oxidative stress damage (P < 0.01). According to integrated transcriptomics and metabolomics analysis, cAMP signaling pathway was enriched following FABP4 inhibitor use. The activation of cAMP signaling pathway was validated. Microscopy and immunofluorescence staining results suggested that FABP4 inhibitors could regulate mitochondrial membrane homeostasis in steatotic LT. CONCLUSIONS: FABP4 was identified as a hypoxia-inducible protein that sensitized steatotic liver grafts to IR injury. The FABP4 inhibitor, BMS-309403, could activate of cAMP signaling pathway thereby modulating mitochondrial membrane homeostasis, reducing oxidative stress injury in steatotic donors.


Subject(s)
Fatty Acid-Binding Proteins , Fatty Liver , Liver Transplantation , Reperfusion Injury , Animals , Mice , Biomarkers , Fatty Acid-Binding Proteins/genetics , Fatty Liver/surgery , Hypoxia , Liver/metabolism , Multiomics , Proteomics , Reperfusion Injury/metabolism , Transaminases/metabolism
6.
J Biol Chem ; 299(8): 104987, 2023 08.
Article in English | MEDLINE | ID: mdl-37392846

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) causes severe morbidity and mortality among newborn piglets. It significantly threatens the porcine industry in China and around the globe. To accelerate the developmental pace of drugs or vaccines against PEDV, a deeper understanding of the interaction between viral proteins and host factors is crucial. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), is crucial for controlling RNA metabolism and biological processes. The present work focused on exploring the effect of PTBP1 on PEDV replication. PTBP1 was upregulated during PEDV infection. The PEDV nucleocapsid (N) protein was degraded through the autophagic and proteasomal degradation pathways. Moreover, PTBP1 recruits MARCH8 (an E3 ubiquitin ligase) and NDP52 (a cargo receptor) for N protein catalysis and degradation through selective autophagy. Furthermore, PTBP1 induces the host innate antiviral response via upregulating the expression of MyD88, which then regulates TNF receptor-associated factor 3/ TNF receptor-associated factor 6 expression and induces the phosphorylation of TBK1 and IFN regulatory factor 3. These processes activate the type Ⅰ IFN signaling pathway to antagonize PEDV replication. Collectively, this work illustrates a new mechanism related to PTBP1-induced viral restriction, where PTBP1 degrades the viral N protein and induces type Ⅰ IFN production to suppress PEDV replication.


Subject(s)
Coronavirus Infections , Interferon Type I , Polypyrimidine Tract-Binding Protein , Porcine epidemic diarrhea virus , Proteolysis , Swine Diseases , Virus Replication , Animals , Cell Line , Chlorocebus aethiops , Coronavirus Infections/genetics , Coronavirus Infections/veterinary , Interferon Type I/metabolism , Porcine epidemic diarrhea virus/physiology , Signal Transduction , Swine , Swine Diseases/genetics , Swine Diseases/virology , Vero Cells , Polypyrimidine Tract-Binding Protein/metabolism
7.
Small ; : e2404000, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809060

ABSTRACT

Multifunctional electrocatalysts for hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) have broad application prospects; However, realization of such kinds of materials remain difficulties because it requires the materials to have not only unique electronic properties, but multiple active centers to deal with different reactions. Here, employing density functional theory (DFT) computations, it is demonstrated that by decorating the Janus-type 2D transition metal dichalcogenide (TMD) of TaSSe with the single atoms, the materials can achieve multifunctionality to catalyze the ORR/OER/HER/HOR. Out of sixteen catalytic systems, Pt-VS (i.e., Pt atom embedded in the sulfur vacancy), Pd-VSe, and Pt-VSe@TaSSe are promising multifunctional catalysts with superior stability. Among them, the Pt-VS@TaSSe catalyst exhibits the highest activity with theoretical overpotentials ηORR = 0.40 V, ηOER = 0.39 V, and ηHER/HOR = 0.07 V, respectively, better than the traditional Pt (111), IrO2 (110). The interplays between the catalyst and the reaction intermediate over the course of the reaction are then systematically investigated. Generally, this study presents a viable approach for the design and development of advanced multifunctional electrocatalysts. It enriches the application of Janus, a new 2D material, in electrochemical energy storage and conversion technology.

8.
Small ; : e2401200, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984748

ABSTRACT

Interfacial chemistry plays a crucial role in determining the electrochemical properties of low-temperature rechargeable batteries. Although existing interface engineering has significantly improved the capacity of rechargeable batteries operating at low temperatures, challenges such as sharp voltage drops and poor high-rate discharge capabilities continue to limit their applications in extreme environments. In this study, an energy-level-adaptive design strategy for electrolytes to regulate interfacial chemistry in low-temperature Li||graphite dual-ion batteries (DIBs) is proposed. This strategy enables the construction of robust interphases with superior ion-transfer kinetics. On the graphite cathode, the design endues the cathode interface with solvent/anion-coupled interfacial chemistry, which yields an nitrogen/phosphor/sulfur/fluorin (N/P/S/F)-containing organic-rich interphase to boost anion-transfer kinetics and maintains excellent interfacial stability. On the Li metal anode, the anion-derived interfacial chemistry promotes the formation of an inorganic-dominant LiF-rich interphase, which effectively suppresses Li dendrite growth and improves the Li plating/stripping kinetics at low temperatures. Consequently, the DIBs can operate within a wide temperature range, spanning from -40 to 45 °C. At -40 °C, the DIB exhibits exceptional performance, delivering 97.4% of its room-temperature capacity at 1 C and displaying an extraordinarily high-rate discharge capability with 62.3% capacity retention at 10 C. This study demonstrates a feasible strategy for the development of high-power and low-temperature rechargeable batteries.

9.
Planta ; 260(1): 6, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780795

ABSTRACT

MAIN CONCLUSION: TaAGL66, a MADS-box transcription factor highly expressed in fertile anthers of KTM3315A, regulates anther and/or pollen development, as well as male fertility in wheat with Aegilops kotschyi cytoplasm. Male sterility, as a string of sophisticated biological processes in higher plants, is commonly regulated by transcription factors (TFs). Among them, MADS-box TFs are mainly participated in the processes of floral organ formation and pollen development, which are tightly related to male sterility, but they have been little studied in the reproductive development in wheat. In our study, TaAGL66, a gene that was specifically expressed in spikes and highly expressed in fertile anthers, was identified by RNA sequencing and the expression profiles data of these genes, and qRT-PCR analyses, which was localized to the nucleus. Silencing of TaAGL66 under fertility condition in KTM3315A, a thermo-sensitive male sterile line with Ae. kotschyi cytoplasm, displayed severe fertility reduction, abnormal anther dehiscence, defective pollen development, decreased viability, and low seed-setting. It can be concluded that TaAGL66 plays an important role in wheat pollen development in the presence of Ae. kotschyi cytoplasm, providing new insights into the utilization of male sterility.


Subject(s)
Aegilops , Cytoplasm , Fertility , Gene Expression Regulation, Plant , Plant Infertility , Plant Proteins , Pollen , Triticum , Triticum/genetics , Triticum/growth & development , Triticum/physiology , Cytoplasm/metabolism , Cytoplasm/genetics , Pollen/genetics , Pollen/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Aegilops/genetics , Plant Infertility/genetics , Fertility/genetics , Flowers/genetics , Flowers/growth & development , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Genes, Plant/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
10.
Planta ; 259(3): 64, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329576

ABSTRACT

MAIN CONCLUSION: The loss of TaMYB305 function down-regulated the expression of jasmonic acid synthesis pathway genes, which may disturb the jasmonic acid synthesis, resulting in abnormal pollen development and reduced fertility. The MYB family, as one of the largest transcription factor families found in plants, regulates plant development, especially the development of anthers. Therefore, it is important to identify potential MYB transcription factors associated with pollen development and to study its role in pollen development. Here, the transcripts of an R2R3 MYB gene TaMYB305 from KTM3315A, a thermo-sensitive cytoplasmic male-sterility line with Aegilops kotschyi cytoplasm (K-TCMS) wheat, was isolated. Quantitative real-time PCR (qRT-PCR) and promoter activity analysis revealed that TaMYB305 was primarily expressed in anthers. The TaMYB305 protein was localized in the nucleus, as determined by subcellular localization analysis. Our data demonstrated that silencing of TaMYB305 was related to abnormal development of stamen, including anther indehiscence and pollen abortion in KAM3315A plants. In addition, TaMYB305-silenced plants exhibited alterations in the transcriptional levels of genes involved in the synthesis of jasmonic acid (JA), indicating that TaMYB305 may regulate the expression of genes related to JA synthesis and play an important role during anther and pollen development of KTM3315A. These results provide novel insight into the function and molecular mechanism of R2R3-MYB genes in pollen development.


Subject(s)
Aegilops , Infertility , Oxylipins , Cyclopentanes , Cytoplasm/genetics , Genes, myb , Pollen/genetics , Triticum
11.
J Virol ; 97(1): e0161422, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36541804

ABSTRACT

Porcine epidemic diarrhea (PED) indicates the disease of the acute and highly contagious intestinal infection due to porcine epidemic diarrhea virus (PEDV), with the characteristics of watery diarrhea, vomiting, and dehydration. One of the reasons for diarrhea and death of piglets is PEDV, which leads to 100% mortality in neonatal piglets. Therefore, it is necessary to explore the interaction between virus and host to prevent and control PEDV. This study indicated that the host protein, pre-mRNA processing factor 19 (PRPF19), could be controlled by the signal transducer as well as activator of transcription 1 (STAT1). Thus, PEDV replication could be hindered through selective autophagy. Moreover, PRPF19 was found to recruit the E3 ubiquitin ligase MARCH8 to the N protein for ubiquitination. For the purpose of degradation, the ubiquitin N protein is acknowledged by the cargo receptor NDP52 and transported to autolysosomes, thus inhibiting virus proliferation. To conclude, a unique antiviral mechanism of PRPF19-mediated virus restriction was shown. Moreover, a view of the innate immune response and protein degradation against PEDV replication was provided in this study. IMPORTANCE The highly virulent porcine epidemic diarrhea virus (PEDV) emerged in 2010, and causes high mortality rates in newborn pigs. There are no effective and safe vaccines against the highly virulent PEDV. This virus has caused devastating economic losses in the pork industry worldwide. Studying the relationship between virus and host antiviral factors is important to develop the new antiviral strategies. This study identified the pre-mRNA processing factor 19 (PRPF19) as a novel antiviral protein in PEDV replication and revealed its viral restriction mechanisms for the first time. PRPF19 recruited the E3 ubiquitin ligase MARCH8 to the PEDV N protein for ubiquitination, and the ubiquitin N protein was acknowledged by the cargo receptor NDP52 and transported to autolysosomes for degradation. Our findings provide new insights in host antiviral factors PRPF19 that regulate the selective autophagy protein degradation pathway to inhibit PEDV replication.


Subject(s)
Capsid Proteins , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Capsid Proteins/metabolism , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Porcine epidemic diarrhea virus/physiology , Swine , Swine Diseases/immunology , Swine Diseases/virology , Ubiquitin-Protein Ligases/metabolism , Ubiquitins , Virus Replication/genetics , Nuclear Proteins/metabolism , Autophagy
12.
J Virol ; 97(11): e0147023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37882521

ABSTRACT

IMPORTANCE: As a member of the δ-coronavirus family, porcine deltacoronavirus (PDCoV) is a vital reason for diarrhea in piglets, which can contribute to high morbidity and mortality rates. Initially identified in Hong Kong in 2012, the virus has rapidly spread worldwide. During PDCoV infection, the virus employs evasion mechanisms to evade host surveillance, while the host mounts corresponding responses to impede viral replication. Our research has revealed that PDCoV infection down-regulates the expression of PGAM5 to promote virus replication. In contrast, PGAM5 degrades PDCoV N through autophagy by interacting with the cargo receptor P62 and the E3 ubiquitination ligase STUB1. Additionally, PGAM5 interacts with MyD88 and TRAF3 to activate the IFN signal pathway, resulting in the inhibition of viral replication.


Subject(s)
Coronavirus Infections , Coronavirus Nucleocapsid Proteins , Deltacoronavirus , Interferon Type I , Mitochondrial Proteins , Phosphoprotein Phosphatases , Proteolysis , Swine Diseases , Swine , Virus Replication , Animals , Coronavirus Infections/immunology , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Interferon Type I/immunology , Signal Transduction , Swine/virology , Swine Diseases/virology , Ubiquitin-Protein Ligases/metabolism , Virus Replication/immunology , Coronavirus Nucleocapsid Proteins/metabolism , Deltacoronavirus/immunology , Deltacoronavirus/metabolism , Phosphoprotein Phosphatases/metabolism , Mitochondrial Proteins/metabolism , Down-Regulation , Immune Evasion , RNA-Binding Proteins/metabolism
13.
J Virol ; 97(10): e0078623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796126

ABSTRACT

IMPORTANCE: EV71 poses a significant health threat to children aged 5 and below. The process of EV71 infection and replication is predominantly influenced by ubiquitination modifications. Our previous findings indicate that EV71 prompts the activation of host deubiquitinating enzymes, thereby impeding the host interferon signaling pathway as a means of evading the immune response. Nevertheless, the precise mechanisms by which the host employs ubiquitination modifications to hinder EV71 infection remain unclear. The present study demonstrated that the nonstructural protein 2Apro, which is encoded by EV71, exhibits ubiquitination and degradation mediated by the host E3 ubiquitin ligase SPOP. In addition, it is the first report, to our knowledge, that SPOP is involved in the host antiviral response.


Subject(s)
Cysteine Endopeptidases , Enterovirus A, Human , Enterovirus Infections , Host Microbial Interactions , Ubiquitin-Protein Ligases , Ubiquitin , Ubiquitination , Viral Proteins , Child , Humans , Enterovirus A, Human/enzymology , Enterovirus A, Human/physiology , Enterovirus Infections/metabolism , Enterovirus Infections/virology , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Proteins/antagonists & inhibitors , Viral Proteins/metabolism , Cysteine Endopeptidases/metabolism
14.
Ann Rheum Dis ; 83(5): 564-575, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38272667

ABSTRACT

OBJECTIVE: Erythropoietin (EPO) known as an erythrocyte-stimulating factor is increased in patients with rheumatoid arthritis (RA). Nevertheless, the function of EPO in the process of RA and relative mechanism needs to be further clarified. METHODS: The level of EPO in serum and synovial fluid from patients with RA and healthy controls was determined by . Collagen-induced arthritis (CIA) mice were constructed to confirm the role of EPO on RA pathogenesis. Differentially expressed genes (DEGs) of EPO-treated fibroblast-like synoviocyte (FLS) were screened by transcriptome sequencing. The transcription factor of neuraminidase 3 (NEU3) of DEGs was verified by double luciferase reporting experiment, DNA pulldown, electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR (qPCR) assay. RESULTS: The overexpression of EPO was confirmed in patients with RA, which was positively associated with Disease Activity Score 28-joint count. Additionally, EPO intervention could significantly aggravate the joint destruction in CIA models. The upregulation of NEU3 was screened and verified by transcriptome sequencing and qPCR in EPO-treated FLS, and signal transducer and activator of transcription 5 was screened and verified to be the specific transcription factor of NEU3. EPO upregulates NEU3 expression via activating the Janus kinase 2 (JAK2)-STAT5 signalling pathway through its receptor EPOR, thereby to promote the desialylation through enhancing the migration and invasion ability of FLS, which is verified by JAK2 inhibitor and NEU3 inhibitor. CONCLUSION: EPO, as a proinflammatory factor, accelerates the process of RA through transcriptional upregulation of the expression of NEU3 by JAK2/STAT5 pathway.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Erythropoietin , Neuraminidase , Synoviocytes , Animals , Humans , Mice , Arthritis, Experimental/genetics , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Cell Proliferation , Cells, Cultured , Erythropoietin/metabolism , Fibroblasts/metabolism , Neuraminidase/metabolism , STAT5 Transcription Factor/metabolism , Synovial Membrane/metabolism , Synoviocytes/metabolism
15.
PLoS Pathog ; 18(2): e1010295, 2022 02.
Article in English | MEDLINE | ID: mdl-35180274

ABSTRACT

Many cellular genes and networks induced in human lung epithelial cells infected with the influenza virus remain uncharacterized. Here, we find that p21 levels are elevated in response to influenza A virus (IAV) infection, which is independent of p53. Silencing, pharmacological inhibition or deletion of p21 promotes virus replication in vitro and in vivo, indicating that p21 is an influenza restriction factor. Mechanistically, p21 binds to the C-terminus of IAV polymerase subunit PA and competes with PB1 to limit IAV polymerase activity. Besides, p21 promotes IRF3 activation by blocking K48-linked ubiquitination degradation of HO-1 to enhance type I interferons expression. Furthermore, a synthetic p21 peptide (amino acids 36 to 43) significantly inhibits IAV replication in vitro and in vivo. Collectively, our findings reveal that p21 restricts IAV by perturbing the viral polymerase complex and activating the host innate immune response, which may aid the design of desperately needed new antiviral therapeutics.


Subject(s)
Influenza A virus , Influenza, Human , Interferon Type I , A549 Cells , Humans , Immunity, Innate , Interferon Type I/metabolism , Virus Replication/genetics
16.
Rheumatology (Oxford) ; 63(3): 826-836, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37326830

ABSTRACT

OBJECTIVE: Sialylation of the crystallizable fragment (Fc) of ACPAs, which is catalysed by ß-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) could attenuate inflammation of RA. In this study, we screened the transcription factor of ST6GAL1 and elucidated the mechanism of transcriptionally upregulating sialylation of ACPAs in B cells to explore its role in the progression of RA. METHODS: Transcription factors interacting with the P2 promoter of ST6GAL1 were screened by DNA pull-down and liquid chromatography with tandem mass spectrometry (LC-MS/MS), and verified by chromatin immunoprecipitation (ChIP), dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). The function of the CCCTC-binding factor (CTCF) on the expression of ST6GAL1 and the inflammatory effect of ACPAs were verified by knocking down and overexpressing CTCF in B cells. The CIA model was constructed from B cell-specific CTCF knockout mice to explore the effect of CTCF on arthritis progression. RESULTS: We observed that the levels of ST6GAL1 and ACPAs sialylation decreased in the serum of RA patients and were negatively correlated with DAS28 scores. Subsequently, CTCF was screened and verified as the transcription factor interacting with the P2 promoter of ST6GAL1, which enhances the sialylation of ACPAs, thus weakening the inflammatory activity of ACPAs. Furthermore, the above results were also verified in the CIA model constructed from B cell-specific CTCF knockout mice. CONCLUSION: CCCTC-binding factor is the specific transcription factor of ß-galactoside α-2,6-sialyltransferase 1 in B cells that upregulates the sialylation of ACPAs in RA and attenuates the disease progression.


Subject(s)
Aminosalicylic Acids , Arthritis, Rheumatoid , Galactosides , Transcription Factors , Animals , Mice , Humans , CCCTC-Binding Factor , Anti-Citrullinated Protein Antibodies , Chromatography, Liquid , Tandem Mass Spectrometry , Mice, Knockout , Sialyltransferases/genetics
17.
Stem Cells ; 41(6): 628-642, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36951300

ABSTRACT

Migration of mesenchymal stem cells (MSCs) to the site of injury is crucial in transplantation therapy. Studies have shown that cell migration is regulated by the cellular microenvironment and accompanied by changes in cellular metabolism. However, limited information is available about the relationship between MSC migration and cellular metabolism. Here, we show that basic fibroblast growth factor (bFGF) promotes the migration of MSCs with high levels of glycolysis and high expression of hexokinase 2 (HK2), a rate-limiting enzyme in glycolysis. The enhancement of glycolysis via the activation of HK2 expression promoted the migration of MSCs, whereas the inhibition of glycolysis, but not of oxidative phosphorylation, inhibited the bFGF-induced migration of these cells. Furthermore, bFGF enhanced glycolysis by increasing HK2 expression, which consequently promoted ß-catenin accumulation, and the inhibition of glycolysis inhibited the bFGF-induced accumulation of ß-catenin. When the accumulation of glycolytic intermediates was altered, phosphoenolpyruvate was found to be directly involved in the regulation of ß-catenin expression and activation, suggesting that bFGF regulates ß-catenin signaling through glycolytic intermediates. Moreover, transplantation with HK2-overexpressing MSCs significantly improved the effect of cell therapy on skull injury in rats. In conclusion, we propose a novel glycolysis-dependent ß-catenin signaling regulatory mechanism and provide an experimental and theoretical basis for the clinical application of MSCs.


Subject(s)
Fibroblast Growth Factor 2 , Mesenchymal Stem Cells , Animals , Rats , beta Catenin/metabolism , Cell Movement , Fibroblast Growth Factor 2/metabolism , Glycolysis , Mesenchymal Stem Cells/metabolism , Wnt Signaling Pathway
18.
Langmuir ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016444

ABSTRACT

In this study, we present a novel system consisting of nanomotors and a hydrogel. Calcium carbonate nanomotors are prepared using layer-by-layer self-assembly technology with calcium carbonate nanoparticles as the core and catalase (CAT) and polydopamine (PDA) as the shell. Calcium carbonate nanomotors were loaded into a Schiff base hydrogel to synthesize the CaCO3@NM-hydrogel system. A nanomotor is a device that works on the nanoscale to convert some form of energy to mechanical energy. The motion speed of the system in 5.0 mM H2O2 aqueous solution under near-infrared light (NIR) irradiation with a power density of 1.8 W/cm2 is 13.6 µm/s. The addition of CaCO3@NM further promotes gelation and improves the mechanical properties. The energy storage modulus increases to 4.0 × 103 Pa, which is 50 times higher. Schiff base hydrogels form dynamic reversible chemical bonds due to inter- and intramolecular hydrogen bonding. They also have good self-healing properties, as observed by measuring the energy storage modulus versus the loss modulus at 1 versus 10 kHz. The results show that the system significantly inhibited the growth of both Gram-positive bacteria, Staphylococcus aureus, and Gram-negative bacteria, Escherichia coli, after 48 h, with an inhibition rate of nearly 95%. These findings provide a basis for further research and potential applications of the system in wound dressings.

19.
Circ Res ; 131(9): 748-764, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36164986

ABSTRACT

BACKGROUND: Atherosclerosis occurs mainly at arterial branching points exposed to disturbed blood flow. How MST1 (mammalian sterile 20-like kinase 1), the primary kinase in the mechanosensitive Hippo pathway modulates disturbed flow induced endothelial cells (ECs) activation and atherosclerosis remains unclear. METHODS: To assess the role of MST1 in vivo, mice with EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-) were used in an atherosclerosis model generated by carotid artery ligation. Mass spectrometry, immunoprecipitation, proximity ligation assay, and dye uptake assay were used to identify the functional substrate of MST1. Human umbilical vein endothelial cells and human aortic endothelial cells were subjected to oscillatory shear stress that mimic disturbed flow in experiments conducted in vitro. RESULTS: We found that the phosphorylation of endothelial MST1 was significantly inhibited in oscillatory shear stress-exposed regions of human and mouse arteries and ECs. Ectopic lenti-mediated overexpression of wild-type MST1, but not a kinase-deficient mutant of MST1, reversed disturbed flow-caused EC activation and atherosclerosis in EC-specific Mst1 deficiency on ApoE-/- background (Mst1iECKOApoE-/-). Inhibition of MST1 by oscillatory shear stress led to reduced phosphorylation of Cx43 (connexin 43) at Ser255, the Cx43 hemichannel open, EC activation, and atherosclerosis, which were blocked by TAT-GAP19, a Cx43 hemichannel inhibitory peptide. Mass spectrometry studies identified that Filamin B fueled the translocation of Cx43 to lipid rafts for further hemichannel open. Finally, lenti-mediated overexpression of the Cx43S255 mutant into glutamate to mimic phosphorylation blunted disturbed flow-induced EC activation, thereby inhibiting the atherogenesis in both ApoE-/- and Mst1 iECKOApoE-/- mice. CONCLUSIONS: Our study reveals that inhibition of the MST1-Cx43 axis is an essential driver of oscillatory shear stress-induced endothelial dysfunction and atherosclerosis, which provides a new therapeutic target for the treatment of atherosclerosis.


Subject(s)
Atherosclerosis , Connexin 43 , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Cells, Cultured , Connexin 43/metabolism , Filamins/metabolism , Glutamates/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Mammals , Mice , Stress, Mechanical
20.
Arterioscler Thromb Vasc Biol ; 43(6): 910-926, 2023 06.
Article in English | MEDLINE | ID: mdl-37078289

ABSTRACT

BACKGROUND: The benefits of exercise on the cardiovascular system are widely recognized; however, the underlying mechanisms are unknown. Here, we report the effect of the long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1), which is regulated by exercise, on atherosclerosis development after N6-methyladenosine (m6A) modifications. METHODS: Using clinical cohorts and NEAT1-/- mice, we determined the exercise-mediated expression and role of NEAT1 in atherosclerosis. To investigate the mechanism of epigenetic modification of NEAT1 regulated by exercise, we identified METTL14 (methyltransferase-like 14)-a key m6A modification enzyme under exercise-and found that METTL14 alters the expression and role of NEAT1 through m6A modification and elucidated the specific mechanism of METTL14 in vitro and in vivo. Finally, the NEAT1 downstream regulatory network was investigated. RESULTS: We found that NEAT1 expression was downregulated with exercise and that downregulation of NEAT1 was an important factor in the improvement of atherosclerosis with exercise. Exercise-mediated loss of function of NEAT1 can delay atherosclerosis. Mechanistically, we showed that exercise induced a significant downregulation of m6A modification and METTL14, which binds to the m6A sites of NEAT1 and promotes NEAT1 expression through subsequent YTHDC1 (YTH domain-containing 1) recognition to promote endothelial pyroptosis. Furthermore, NEAT1 induces endothelial pyroptosis by binding KLF4 (Kruppel-like factor 4) to promote the transcriptional activation of the key pyroptotic protein NLRP3 (NOD-like receptor thermal protein domain-associated protein 3), whereas exercise can attenuate NEAT1-mediated endothelial pyroptosis to improve atherosclerosis. CONCLUSIONS: Our study of NEAT1 provides new insights into the improvement of atherosclerosis by exercise. This finding demonstrates the role of exercise-mediated NEAT1 downregulation in atherosclerosis while expanding our understanding of the mechanisms by which exercise regulates long noncoding RNA function through epigenetic modifications.


Subject(s)
Atherosclerosis , RNA, Long Noncoding , Animals , Mice , Adenosine , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Pyroptosis , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL