Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Anim Physiol Anim Nutr (Berl) ; 107(2): 541-555, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35586975

ABSTRACT

This study was conducted to investigate the relationship between changes in intestinal aquaporins (AQPs) in piglets fed diets with different protein levels and nutritional diarrhoea in piglets. Briefly, 96 weaned piglets were randomly divided into four groups fed diets with crude protein (CP) levels of 18%, 20%, 22% and 24%. The small intestines and colons of the weaned piglets were collected, and several experiments were conducted. In the small intestine, AQP4 protein expression was higher in weaned piglets fed the higher-CP diets (22% and 24% CP) than in those fed the 20% CP diet except at 72 h (p < 0.01). At 72 h, the AQP4 protein expression in the small intestine was lower in the 18% group than in the other three groups (p < 0.01). Under 20% CP feeding, AQP2, AQP4 and AQP9 protein expression in the colons of piglets peaked at certain time points. The AQP2 and AQP4 mRNA levels in the colon and the AQP4 and AQP4 mRNA levels in the distal colon were approximately consistent with the protein expression levels. However, the AQP9 mRNA content in the colon was highest in the 18% group, and the AQP2 mRNA content in the distal colon was significantly higher in the 24% group than in the 20% group. AQP2 and AQP4 were expressed mainly around columnar cells in the upper part of the smooth colonic intestinal villi, and AQP9 was expressed mainly on columnar cells and goblet cells in the colonic mucosa. In conclusion, 20% CP is beneficial to the normal expression of AQP4 in the small intestine, AQP2, AQP4 and AQP9 in the colon of weaned piglets, which in turn maintains the balance of intestinal water absorption and secretion in piglets.


Subject(s)
Aquaporin 2 , Aquaporin 4 , Animals , Swine , Aquaporin 4/pharmacology , Intestines , Diet , Weaning , Intestinal Mucosa/metabolism , Dietary Proteins/metabolism , RNA, Messenger
2.
Opt Express ; 30(5): 8356-8365, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299578

ABSTRACT

BiCuSeO is a widely-used thermoelectric material recently proved to be an appealing candidate for broadband photothermoelectric (PTE) detection. Developing a simple and scalable route for advancing PTE properties is therefore essential to explore the full potential of BiCuSeO. Here we systematically demonstrated that Co3+ atomic doping strategies in BiCuSeO single crystals (Co concentration of 1%, 2% and 4%) could modulate the Seebeck coefficient and thus strongly improve the performance of BiCuSeO PTE photodetectors across visible to infrared spectral regions. Benefiting from these strategies, a large enhancement on photovoltage responsivity is achieved and the response time of a 4% Co:BiCuSeO PTE photodetector is one order of magnitude faster than those in most of PTE photodetectors. Also, Co:BiCuSeO PTE photodetectors show good stability with changeless photoresponse after being exposed to air for three months. Therefore, the controllable atomic doping of BiCuSeO with tunable PTE properties as well as fast and broadband photodetection provides the feasibility for facilitating ongoing research toward PTE devices.

3.
Water Sci Technol ; 85(4): 1235-1249, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35228366

ABSTRACT

Magnetic nickel-copper ferrite (NixCuyFe2O4) nano-catalyst was synthesized by co-precipitation method, and it exhibited excellent ability for activating peroxydisulfate (PDS) in the degradation of ciprofloxacin (CIP). As-prepared Ni0.5Cu0.5Fe2O4 properties were characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope equipped with an energy-dispersive X-ray (SEM-EDX), transmissions electron microscopy (TEM), N2 adsorption-desorption isotherm plot of Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH), vibrating sample magnetometer (VSM). The maximum degradation efficiency is 80.2% by using 0.500 g/L of Ni0.5Cu0.5Fe2O4 for activating 5.00 mmol/L of PDS to degrade CIP (20.0 mg/L) at 25 ± 2 °C for 50 min (pH = 6.00). The presence of interfering ions Cl-, NO3-, and HCO3- inhibited the reaction by producing reactive species with low oxidation potential, inducing the degradation efficiency down to 60.0%, 58.1% and 21.5% respectively. Ni0.5Cu0.5Fe2O4 displayed great magnetic separation characteristic for the satisfactory magnetization; saturation value is ∼8.6 emu/g. The degradation efficiency of recycled samples has no significant difference after using three times, which is about 60%, indicating that Ni0.5Cu0.5Fe2O4 is a reusability catalyst in activating PDS for CIP degradation. This work might provide an efficient and promising approach to construct recyclable magnetic materials that can be used for wastewater treatment.


Subject(s)
Ciprofloxacin , Water Purification , Adsorption , Ciprofloxacin/chemistry , Magnetic Phenomena , Magnetics
4.
Water Sci Technol ; 86(10): 2718-2731, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36450682

ABSTRACT

Nickle-copper ferrite (Ni0.5Cu0.5Fe2O4) supported on activated carbon (AC) (AC@Ni0.5Cu0.5Fe2O4) was synthesized and used as adsorbent, photocatalyst, and activator of peroxydisulfate (PDS) to realize the removal of ciprofloxacin (CIP). AC@Ni0.5Cu0.5Fe2O4 properties were characterized by scanning electron microscope equipped with energy-dispersive X-ray (SEM-EDX), X-ray diffraction (XRD), N2 adsorption-desorption isotherm plot of Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH), vibrating sample magnetometer (VSM). A rapid removal rate (94.30%) of CIP was achieved on AC@Ni0.5Cu0.5Fe2O4/PDS/UV system with the condition of catalyst dosage 0.30 g/L, initial pH 7.3, PDS addition 0.20 mM, CIP concentration 10 mg/L (200 mL), UV 28 W, in 30 min. Free radical quenching experiments indicate that reactive species of superoxide (·O2-), holes (h+), sulfate radicals (SO4-·) and hydroxyl radicals (·OH) were produced and all worked. The reusability test demonstrated that AC@Ni0.5Cu0.5Fe2O4 could be recycled five times with minimal performance reduction for the removal of CIP. The XRD and SEM of the after used AC@Ni0.5Cu0.5Fe2O4 did not change significantly, which further showed its stability and recyclability. This work might provide new insight into the application of AC@Ni0.5Cu0.5Fe2O4 in photocatalysis coupled with adsorption in peroxydisulfate assisted system and has high potential in CIP removal.


Subject(s)
Charcoal , Ciprofloxacin , Adsorption , Copper , Hydroxyl Radical
5.
Article in English | MEDLINE | ID: mdl-34870539

ABSTRACT

Natural organic matter (NOM) has been considered a critical substance in the transport and transformation of arsenic. NOM is a complex mixture of multifunctional organic components with a wide molecular weight (MW) distribution, and it is necessary to understand the complexation of arsenic with MW-dependent NOM fractions. In this study, humic acid (HA) was chosen as the representative fraction of NOM to investigate the complexation mechanism with arsenic. The bulk HA sample was fractionated to five fractions by ultrafiltration technology, and the complexing property of HA fractions with arsenic was analyzed by the dialysis method. We observed that the acidic and neutral conditions favor the complexation of HA fractions with arsenate (As(V)). The HA fractions with molecular weight > 100 kDa, 1-10 kDa, and <1 kDa have the stronger complexing capacity of As(V) than the other HA fractions. The bound As(V) percentage was positively associated with carboxyl content, phenolic content, and especially total acidity. A two-site ligand-binding model can describe the complexing capacity of arsenic onto HA fractions. The results can provide some fundamental information about the complexation of arsenic with MW-dependent HA fractions quantitatively.


Subject(s)
Arsenic , Humic Substances , Arsenates , Arsenic/chemistry , Humic Substances/analysis , Molecular Weight , Water
6.
Bull Environ Contam Toxicol ; 106(1): 121-125, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32430532

ABSTRACT

The coprecipitation of selenium(IV) (Se) with iron(III) (Fe) is a widely practiced method for the removal of Se from mineral processing effluents, but the effect of gypsum as a major secondary mineral on the iron-selenium coprecipitation process is still of concern. In our work we first investigated the effects of pH, Fe/Se molar ratio and the neutralizing agent on the removal efficiency of Se by iron-selenium coprecipitation method. The developed two-step Fe-Se coprecipitation method (Fe/Se molar ratio of 4) was superior to the one-step Fe-Se coprecipitation method at pH 4 using CaO as base in terms of the stability of the generated Fe-Se coprecipitates. Raman experimental results indicated the iron-selenium coprecipitates had the by-product of calcium selenite. We then investigated the effect of incorporation of Se into gypsum on the coprecipitation process at different pHs. The fourier transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM) of the calcium-selenium coprecipitates showed that the Se incorporated into the structure of gypsum at pH 8-10. Therefore, this work has important implications for the development of new technologies for efficient Se removal.


Subject(s)
Iron , Selenium , Calcium , Calcium Sulfate , X-Ray Diffraction
7.
Water Sci Technol ; 80(10): 1851-1860, 2019 Nov.
Article in English | MEDLINE | ID: mdl-32144217

ABSTRACT

A novel zerovalen-iron-biochar composite (nZVI/SBC) was synthesized by using FeCl3-laden sorghum straw biomass as the raw material via a facile one-step pyrolysis method without additional chemical reactions (e.g., by NaBH4 reduction or thermochemical reduction). The nZVI/SBC was successfully employed as an activator in phenol degradation by activated persulfate. XRD, SEM, N2 adsorption-desorption and atomic absorption spectrophotometry analysis showed that the nanosized Fe0 was the main component of the 4ZVI/SBC activator, which was a mesopore material with an optimal FeCl3·6H2O/biomass impregnation mass ratio of 2.7 g/g. The 4ZVI/SBC activator showed an efficient degradation of phenol (95.65% for 30 min at 25 °C) with a large specific surface area of 78.669 m2·g-1. The recovery of 4ZVI/SBC activator after the degradation reaction of phenol can be realized with the small amount of dissolved iron in the water. The 4ZVI/SBC activator facilitated the activation of persulfate to degrade phenol into non-toxic CO2 and H2O. The trend of Cl-, SO4 2- and NO3 - affected the removal efficiency of phenol by using the 4ZVI/SBC activator in the following order: NO3 - > SO4 2- > Cl-. The one-step synthesis of the nanosized zerovalent-iron-biochar composite was feasible and may be applied as an effective strategy for controlling organic waste (e.g. phenol) by waste biomass.


Subject(s)
Iron , Water Pollutants, Chemical , Adsorption , Charcoal , Phenols
8.
Inorg Chem ; 57(5): 2730-2735, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29446937

ABSTRACT

The triangular lattice Na xRhO2 contains a 4d Rh element with large spin-orbit coupling, and the electron-electron correlation effect is expected to have some novel physical properties. Here we report NaRhO2 crystal growth by Na2CO3 vapor growth and a series of Na xRhO2 (0.25 ≤ x ≤ 1) crystals prepared using the chemical desodiation method. Na xRhO2 reveals a layer structure with the space group R3̅ m, and the lattice parameter a evolves from 3.09 to 3.03 Å and c from 15.54 to 15.62 Å when x decreases from 1.0 to 0.2. Decreasing potassium concentration leads to a contraction of the RhO6 octahedral layers, which may be attributed to a higher covalency of Rh-O bonds. More important, the metal-insulator transition in Na xRhO2 was observed in resistivity along the ab plane. The conducting mechanism of Na xRhO2 is strongly dependent on x. Two-dimensional variable range hopping (VRH) mechanisms (0.67 ≤ x ≤ 1) and metallic behaviors (0.42 and 0.47) are observed in temperature-dependent resistivity. The origin of this metal-insulator transition was discussed on the basis of the Ioffe-Regel criterion. Our work demonstrates the strong correlation between sodium concentration and physical properties of Na xRhO2.

9.
Phys Rev Lett ; 118(9): 096603, 2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28306288

ABSTRACT

The asymmetric electron dispersion in type-II Weyl semimetal theoretically hosts anisotropic transport properties. Here, we observe the significant anisotropic Adler-Bell-Jackiw (ABJ) anomaly in the Fermi-level delicately adjusted WTe_{1.98} crystals. Quantitatively, C_{W}, a coefficient representing the intensity of the ABJ anomaly along the a and b axis of WTe_{1.98} are 0.030 and 0.051 T^{-2} at 2 K, respectively. We found that the temperature-sensitive ABJ anomaly is attributed to a topological phase transition from a type-II Weyl semimetal to a trivial semimetal, which is verified by a first-principles calculation using experimentally determined lattice parameters at different temperatures. Theoretical electrical transport study reveals that the observation of an anisotropic ABJ along both the a and b axes in WTe_{1.98} is attributed to electrical transport in the quasiclassical regime. Our work may suggest that electron-doped WTe_{2} is an ideal playground to explore the novel properties in type-II Weyl semimetals.

10.
Nano Lett ; 16(4): 2254-9, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26886761

ABSTRACT

van der Waals junctions of two-dimensional materials with an atomically sharp interface open up unprecedented opportunities to design and study functional heterostructures. Semiconducting transition metal dichalcogenides have shown tremendous potential for future applications due to their unique electronic properties and strong light-matter interaction. However, many important optoelectronic applications, such as broadband photodetection, are severely hindered by their limited spectral range and reduced light absorption. Here, we present a p-g-n heterostructure formed by sandwiching graphene with a gapless band structure and wide absorption spectrum in an atomically thin p-n junction to overcome these major limitations. We have successfully demonstrated a MoS2-graphene-WSe2 heterostructure for broadband photodetection in the visible to short-wavelength infrared range at room temperature that exhibits competitive device performance, including a specific detectivity of up to 10(11) Jones in the near-infrared region. Our results pave the way toward the implementation of atomically thin heterostructures for broadband and sensitive optoelectronic applications.

11.
Phys Rev Lett ; 116(25): 256601, 2016 Jun 24.
Article in English | MEDLINE | ID: mdl-27391737

ABSTRACT

The quantum anomalous Hall (QAH) phase is a two-dimensional bulk ferromagnetic insulator with a nonzero Chern number in the presence of spin-orbit coupling (SOC) but in the absence of applied magnetic fields. Associated metallic chiral edge states host dissipationless current transport in electronic devices. This intriguing QAH phase has recently been observed in magnetic impurity-doped topological insulators, albeit, at extremely low temperatures. Based on first-principles density functional calculations, here we predict that layered rhodium oxide K_{0.5}RhO_{2} in the noncoplanar chiral antiferromagnetic state is an unconventional three-dimensional QAH insulator with a large band gap and a Néel temperature of a few tens of Kelvins. Furthermore, this unconventional QAH phase is revealed to be the exotic quantum topological Hall effect caused by nonzero scalar spin chirality due to the topological spin structure in the system and without the need of net magnetization and SOC.

12.
Phys Rev Lett ; 116(17): 176803, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-27176532

ABSTRACT

We report an atomic-scale characterization of ZrTe_{5} by using scanning tunneling microscopy. We observe a bulk band gap of ∼80 meV with topological edge states at the step edge and, thus, demonstrate that ZrTe_{5} is a two-dimensional topological insulator. We also find that an applied magnetic field induces an energetic splitting of the topological edge states, which can be attributed to a strong link between the topological edge states and bulk topology. The relatively large band gap makes ZrTe_{5} a potential candidate for future fundamental studies and device applications.

13.
RSC Adv ; 14(34): 24413-24423, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39108970

ABSTRACT

The overuse of antibiotics in treating bacterial infections is a significant threat to the environment and human health. The utilization of visible-light-assisted peroxydisulfate (PDS) activation for eliminating organic pollutants is a promising approach. This study uses a straightforward hydrothermal method to prepare magnetically recyclable spherical Cu2O@Fe3O4. The efficacy of this material in removing antibiotic pollutants was assessed using simulated wastewater containing tetracycline (TC). TC removal was achieved by activating PDS with Cu2O@Fe3O4 as the visible light photocatalyst. Experimental findings revealed that under specific conditions-a pH of 9, a Cu2O@Fe3O4 concentration of 60 mg L-1, and a PDS concentration of 25 mg L-1-the removal rate of TC reached 97.67% after 30 min of irradiation. Moreover, Cu2O@Fe3O4 exhibited excellent recyclability, maintaining a removal rate of 93.33% after five recycling rounds. X-ray diffraction characterization of the Cu2O@Fe3O4 composite before and after cycling confirmed its robust stability and reusability. In situ X-ray photoelectron spectroscopy analysis showed that electrons migrated from Fe3O4 to Cu2O during the photocatalytic reaction, indicating the formation of an S-type heterojunction in Cu2O@Fe3O4. Free radical trapping experiments demonstrated the active involvement of ·OH, ·O2 -, SO4˙- and h+ radicals in TC removal.

14.
Environ Sci Pollut Res Int ; 30(30): 75500-75510, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37219775

ABSTRACT

The sulfate radical-based advanced oxidation process (SR-AOPs) has been verified as a promising method to handle the persistent organic compounds in water using peroxydisulfate (PDS) as oxidant. A Fenton-like process was constructed and showed great potential to remove organic pollutants using visible-light-assisted PDS activation. The g-C3N4@SiO2 was synthesized via thermo-polymerization, and characterized using powder X-ray diffraction (XRD), scanning electron microscope equipped with an energy-dispersive X-ray (SEM-EDX), X-ray photoelectron spectroscopy (XPS), N2 adsorption-desorption, Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) method, photoluminescence (PL), transient photocurrent, and electrochemical impedance. Photocatalytic performance was demonstrated using the removal rate of Rhodamine B (RhB), and 96.08% RhB was removed from the solution within 50 min (10 mg/L in 200 mL, g-C3N4@SiO2 = 0.25 g/L, pH = 6.3, PDS = 1 mmol/L). The free radical capture experiment proved that HO•, h+, [Formula: see text] and [Formula: see text] were generated and removed RhB. The cyclic stability of g-C3N4@SiO2 has also been studied, and the result shows no noticeable difference in the six cycles. The system of visible-light-assisted PDS activation might provide a novel strategy for wastewater treatment and must be an environment-friendly catalyst.


Subject(s)
Light , Silicon Dioxide , Rhodamines , Nitriles/chemistry
15.
Environ Sci Pollut Res Int ; 30(57): 119796-119803, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37930567

ABSTRACT

PASS is an innovative inorganic polymer flocculant (IPF), which possesses the advantages of a polysilicate/aluminum sulfate-based flocculant. Recently, solid wastes rich in Si and Al, such as kaolinite, rice husks, and abandoned molecular sieves (AMS) have been recognized as promising raw materials for the synthesis of flocculants. The present study involved the synthesis of PASS flocculant derived from AMS. The efficacy of the as-prepared PASS was evaluated through the flocculation of wastewater containing ultramarine blue (UB) pigment. The optimal flocculation performance of PASS was observed at a Si/Al molar ratio of 1.62 and a polymerization time of 9 h. Furthermore, we investigated the impact of PASS dosage, stirring/settling time, and pH on the flocculation process while also exploring potential mechanisms. The PASS flocculant prepared in this study exhibited superior performance compared to the commercially available polyaluminum sulfate (PAS). The results demonstrated the viability of preparing PASS flocculants from waste resources.


Subject(s)
Sulfates , Water Purification , Aluminum Silicates , Water Purification/methods , Silicates , Polymers/chemistry , Flocculation
16.
RSC Adv ; 13(24): 16602-16609, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37305443

ABSTRACT

The quick charge recombination of light-generated electrons and holes severely restricts the photocatalytic applications of single semiconductors. Here, a straightforward electrostatically driven self-assembly technique was used to construct an Ag2NCN/Ti3C2Tx Schottky heterojunction, which was then used to degrade Rhodamine B (RhB) in the illumination of visible light. The findings from the experiments revealed that as a cocatalyst, Ti3C2Tx significantly suppresses the recombination rate and broadens visible absorptivity to improve Ag2NCN photocatalytic efficiency. The optimized Ag2NCN/Ti3C2Tx (AT2) composite exhibited an outstanding photocatalytic rate in 96 min, with the highest RhB degradation rate (k = 0.029 min-1), which was around fifteen times that of pure Ag2NCN (k = 0.002 min-1). Furthermore, the trapping-agent experiment showed photogenerated superoxide radicals and holes were the principal active agents inside the photodegradation of RhB. Compared with Ag-based semiconductors, the composite exhibited outstanding photostability, highlighting its excellent potential for application in visible-light photocatalysis.

17.
Dalton Trans ; 52(40): 14640-14648, 2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37788010

ABSTRACT

Exposing the photocatalyst's highly active facets and hybridizing the photocatalyst with suitable cocatalysts in the proper spot have been recognized as strong methods for high-performance photocatalysts. Herein, Ag2NCN/TiO2-Ti3C2 composites were synthesized by applying simple calcination and physically weak interaction deposition processes to obtain an excellent photocatalyst for Rhodamine B (Rh B) degradation when exposed to visible light. The findings from the experiments reveal that the Ag2NCN/TiO2-Ti3C2400 composite exhibited an outstanding photocatalytic rate in 80 min, with the highest Rh B degradation rate (k = 0.03889 min-1), which was 16 times higher than that of pure Ag2NCN (k = 0.00235 min-1) and 2.2 times higher than that of TiO2-Ti3C2400 (k = 0.01761 min-1). The results from the following factors: (i) the powerful interfacial contact created by the in situ formation of TiO2, and the superior electrical conductivity of Ti3C2 that makes carrier separation possible; (ii) TiO2 with electron-rich (101) facets are deposited on the surface of Ag2NCN, significantly reducing charge carrier recombination by trapping photoelectrons; (iii) a Z-type heterojunction is constructed between nanosize aggregate Ti3C2-TiO2 and Ag2NCN with non-metal Ti3C2 as the solid medium, improving the transfer and separation of photogenerated charges and inhibiting the recombination of electrons and holes. Additionally, the redox ability of the composite photocatalyst is enhanced. Furthermore, the analyses of active species showed that photogenerated superoxide radicals and holes were the principal active agents inside the photodegradation of Rh B. Moreover, the composite exhibited outstanding photo-stability.

18.
Life (Basel) ; 12(10)2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36294976

ABSTRACT

Nitrogen (N) fertilizer affects the migration and transformation of arsenic (As) in soil and rice. We conducted pot experiments and studied the effects of 0.1, 0.2, and 0.4 g∙kg−1 N levels of NH4Cl, (NH4)2SO4, and NH4NO3 fertilizers on the As bioavailability in the As-contaminated inter-rhizosphere soil and As accumulation in the rice organs. The results showed that the concentration of bioavailable As in the rice rhizosphere soil was significantly negatively correlated with pH under the 0.4 g∙kg−1 N level of each fertilizer. At the same N level, while the As concentration was maturity stage > tillering stage in rice stems and leaves treated with NH4Cl and (NH4)2SO4, it was the opposite in roots. This suggests that the transfer of As from roots to stems and leaves mainly occurs in the late stage of rice growth under the condition of only NH4+-N fertilizer applying. The As concentration in rice aboveground organ (grains and stems−leaves) decreased with the increasing N application under the same N fertilizer treatment condition during the mature stage. In addition, the As concentration in rice grains treated with (NH4)2SO4 was the lowest. This result indicated that SO42− and NH4+-N had a significant synergistic inhibition on the As accumulation in rice grains. It was concluded that appropriate (NH4)2SO4 levels for As-contaminated paddy soils with high sulfur (S) contents would obtain rice grains with inorganic As concentrations below 0.2 mg·kg−1.

19.
Sci Total Environ ; 819: 153090, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35038504

ABSTRACT

Stabilizing the hazardous calcium arsenic residues (CAR) and monitoring the subsequent fate of arsenic (As) are critical to reduce its risk to the environment. In this work, a novel in situ method has been proposed to stabilize CAR by adding FeIII solution and subsequent formation of the secondary mineral (yukonite). The experiments were conducted at pH 6-9 with different Fe/As molar ratios (0.28-0.66) and the solid phases were characterized by using X-ray diffraction and scanning/transmission electron microscopy. Results showed that the stability of the CAR was significantly increased after the addition of FeIII solution, indicating good fixation effectiveness. The dissolved As concentration in the treated CAR samples continuously decreased to <5 mg/L after 490 days of treatment at Fe/As molar ratio ≥ 0.54 and pH ≥ 8, with the leached As concentration lower than 5 mg/L (US EPA standard) for most of the treated CAR in the TCLP and HVM tests. The formation of yukonite under different experimental conditions is closely related to the enhanced stability of the treated CAR. This work provides a novel in situ method to treat CAR which might have potential for future industrial applications.


Subject(s)
Arsenic , Arsenic/chemistry , Calcium , Hydrogen-Ion Concentration , Iron/chemistry , X-Ray Diffraction
20.
Sci Total Environ ; 807(Pt 1): 150749, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34619194

ABSTRACT

Adsorption of molybdate (Mo(VI)) on the surfaces of ferrihydrite is one of the most critical processes that control its mobility and fate in the environment. However, the sorption mechanism and the effect of pH on the speciation of Mo(VI) on ferrihydrite surfaces are not well understood. In this study, X-ray diffraction (XRD), Raman, Fourier transform infrared (FTIR), and Mo K-edge and L3-edge X-ray absorption spectroscopy (XAS) have been utilized to characterize the Mo(VI) species sorbed on ferrihydrite under various pH conditions. XRD, Raman, and FTIR results show that at acidic pH, surface precipitation of poorly crystalline ferric molybdate (PCFM) occurs under apparently undersaturated conditions (theoretical log IAP < log Ksp) and is enhanced by the aging process, whereas Mo(VI) is mainly present as surface adsorbed species at circum-neutral pH. The Mo K-edge and L3-edge X-ray absorption near edge structure (XANES) analyses show that a mixture of tetrahedrally and octahedrally coordinated Mo(VI) simultaneously exists at pH 3-7 and the octahedral Mo(VI) species decreases with increasing pH. The Mo-Fe interatomic distances (3.52-3.56 Å) derived from EXAFS fittings suggest the corner-sharing complexation of both MoO4 and MoO6 with FeO6 octahedra. As the pH decreases from 7 to 3, the coordination number of the Mo-Fe shell (CNMo-Fe) increases from 0.6(3) to 1.9(3), possibly due to the gradual transformation of surface adsorbed Mo(VI) to PCFM. These findings on the observation of Mo(VI) complexation, surface precipitation, and their marked pH dependence during the Mo(VI) adsorption on ferrihydrite have important implications for both understanding the mobility and fate of Mo(VI) in natural and hydrometallurgical industry impacted environments and developing optimal applications for the remediation of Mo contamination in aqueous environments.


Subject(s)
Ferric Compounds , Iron , Adsorption , Molybdenum
SELECTION OF CITATIONS
SEARCH DETAIL