Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Exp Zool B Mol Dev Evol ; 340(2): 182-196, 2023 03.
Article in English | MEDLINE | ID: mdl-34958528

ABSTRACT

The genitalia present some of the most rapidly evolving anatomical structures in the animal kingdom, possessing a variety of parts that can distinguish recently diverged species. In the Drosophila melanogaster group, the phallus is adorned with several processes, pointed outgrowths, that are similar in size and shape between species. However, the complex three-dimensional nature of the phallus can obscure the exact connection points of each process. Previous descriptions based upon adult morphology have primarily assigned phallic processes by their approximate positions in the phallus and have remained largely agnostic regarding their homology relationships. In the absence of clearly identified homology, it can be challenging to model when each structure first evolved. Here, we employ a comparative developmental analysis of these processes in eight members of the melanogaster species group to precisely identify the tissue from which each process forms. Our results indicate that adult phallic processes arise from three pupal primordia in all species. We found that in some cases the same primordia generate homologous structures whereas in other cases, different primordia produce phenotypically similar but remarkably non-homologous structures. This suggests that the same gene regulatory network may have been redeployed to different primordia to induce phenotypically similar traits. Our results highlight how traits diversify and can be redeployed, even at short evolutionary scales.


Subject(s)
Drosophila melanogaster , Drosophila , Male , Animals , Genitalia, Male/anatomy & histology , Biological Evolution , Genitalia
2.
Genetica ; 150(6): 343-353, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36242716

ABSTRACT

Quantitative genetics aims at untangling the genetic and environmental effects on phenotypic variation. Trait heritability, which summarizes the relative importance of genetic effects, is estimated at the intraspecific level, but theory predicts that heritability could influence long-term evolution of quantitative traits. The phylogenetic signal concept bears resemblance to heritability and it has often been called species-level heritability. Under certain conditions, such as trait neutrality or contribution to phylogenesis, within-species heritability and between-species phylogenetic signal should be correlated. Here, we investigate the potential relationship between these two concepts by examining the evolution of multiple morphological traits for which heritability has been estimated in Drosophila melanogaster. Specifically, we analysed 42 morphological traits in both sexes on a phylogeny inferred from 22 nuclear genes for nine species of the melanogaster subgroup. We used Pagel's λ as a measurement of phylogenetic signal because it is the least influenced by the number of analysed taxa. Pigmentation traits showed the strongest concordance with the phylogeny, but no correlation was found between phylogenetic signal and heritability estimates mined from the literature. We obtained data for multiple climatic variables inferred from the geographical distribution of each species. Phylogenetic regression of quantitative traits on climatic variables showed a significantly positive correlation with heritability. Convergent selection, the response to which depends on the trait heritability, may have led to the null association between phylogenetic signal and heritability for morphological traits in Drosophila. We discuss the possible causes of discrepancy between both statistics and caution against their confusion in evolutionary biology.


Subject(s)
Drosophila melanogaster , Drosophila , Female , Male , Animals , Drosophila melanogaster/genetics , Phylogeny , Phenotype , Drosophila/genetics , Pigmentation/genetics
3.
Proc Natl Acad Sci U S A ; 113(17): 4771-6, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27044093

ABSTRACT

Recurrent specialization on similar host plants offers a unique opportunity to unravel the evolutionary and genetic mechanisms underlying dietary shifts. Recent studies have focused on ecological races belonging to the same species, but it is hard in many cases to untangle the role of adaptive introgression versus distinct mutations in facilitating recurrent evolution. We discovered on the island of Mayotte a population of the generalist fly Drosophila yakuba that is strictly associated with noni (Morinda citrifolia). This case strongly resembles Drosophila sechellia, a genetically isolated insular relative of D. yakuba whose intensely studied specialization on toxic noni fruits has always been considered a unique event in insect evolution. Experiments revealed that unlike mainland D. yakuba strains, Mayotte flies showed strong olfactory attraction and significant toxin tolerance to noni. Island females strongly discriminated against mainland males, suggesting that dietary adaptation has been accompanied by partial reproductive isolation. Population genomic analysis indicated a recent colonization (∼29 kya), at a time when year-round noni fruits may have presented a predictable resource on the small island, with ongoing migration after colonization. This relatively recent time scale allowed us to search for putatively adaptive loci based on genetic variation. Strong signals of genetic differentiation were found for several detoxification genes, including a major toxin tolerance locus in D. sechellia Our results suggest that recurrent evolution on a toxic resource can involve similar historical events and common genetic bases, and they establish an important genetic system for the study of early stages of ecological specialization and speciation.


Subject(s)
Drosophila/genetics , Fruit/toxicity , Animals , Islands , Morinda/toxicity , Smell/genetics
4.
BMC Evol Biol ; 14: 179, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25115161

ABSTRACT

BACKGROUND: Pigmentation has a long history of investigation in evolutionary biology. In Drosophila melanogaster, latitudinal and altitudinal clines have been found but their underlying causes remain unclear. Moreover, most studies were conducted on cosmopolitan populations which have a relatively low level of genetic structure and diversity compared to sub-Saharan African populations. We investigated: 1) the correlation between pigmentation traits within and between the thorax and the fourth abdominal segment, and 2) their associations with different geographical and ecological variables, using 710 lines belonging to 30 sub-Saharan and cosmopolitan populations. RESULTS: Pigmentation clines substantially differed between sub-Saharan and cosmopolitan populations. While positive correlations with latitude have previously been described in Europe, India and Australia, in agreement with Bogert's rule or the thermal melanism hypothesis, we found a significant negative correlation in Africa. This correlation persisted even after correction for altitude, which in its turn showed a positive correlation with pigmentation independently from latitude. More importantly, we found that thoracic pigmentation reaches its maximal values in this species in high-altitude populations of Ethiopia (1,600-3,100 m). Ethiopian flies have a diffuse wide thoracic trident making the mesonotum and the head almost black, a phenotype that is absent from all other sub-Saharan or cosmopolitan populations including high-altitude flies from Peru (~3,400 m). Ecological analyses indicated that the variable most predictive of pigmentation in Africa, especially for the thorax, was ultra-violet (UV) intensity, consistent with the so-called Gloger's rule invoking a role of melanin in UV protection. CONCLUSION: Our data suggest that different environmental factors may shape clinal variation in tropical and temperate regions, and may lead to the evolution of different degrees of melanism in different high altitude populations in the tropics.


Subject(s)
Drosophila melanogaster/metabolism , Drosophila melanogaster/radiation effects , Pigmentation/radiation effects , Ultraviolet Rays/adverse effects , Abdomen/radiation effects , Altitude , Animals , Drosophila melanogaster/genetics , Ethiopia , Evolution, Molecular , Genetic Variation , Geography , Melanins/metabolism , Phenotype , Pigmentation/genetics , Thorax/metabolism , Thorax/radiation effects
5.
Curr Biol ; 34(5): 1122-1132.e5, 2024 03 11.
Article in English | MEDLINE | ID: mdl-38309271

ABSTRACT

Social insects' nests harbor intruders known as inquilines,1 which are usually related to their hosts.2,3 However, distant non-social inquilines may also show convergences with their hosts,4,5 although the underlying genomic changes remain unclear. We analyzed the genome of the wingless and blind bee louse fly Braula coeca, an inquiline kleptoparasite of the western honey bee, Apis mellifera.6,7 Using large phylogenomic data, we confirmed recent accounts that the bee louse fly is a drosophilid8,9 and showed that it had likely evolved from a sap-breeder ancestor associated with honeydew and scale insects' wax. Unlike many parasites, the bee louse fly genome did not show significant erosion or strict reliance on an endosymbiont, likely due to a relatively recent age of inquilinism. However, we observed a horizontal transfer of a transposon and a striking parallel evolution in a set of gene families between the honey bee and the bee louse fly. Convergences included genes potentially involved in metabolism and immunity and the loss of nearly all bitter-tasting gustatory receptors, in agreement with life in a protective nest and a diet of honey, pollen, and beeswax. Vision and odorant receptor genes also exhibited rapid losses. Only genes whose orthologs in the closely related Drosophila melanogaster respond to honey bee pheromone components or floral aroma were retained, whereas the losses included orthologous receptors responsive to the anti-ovarian honey bee queen pheromones. Hence, deep genomic convergences can underlie major phenotypic transitions during the evolution of inquilinism between non-social parasites and their social hosts.


Subject(s)
Drosophila , Phthiraptera , Bees/genetics , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Phthiraptera/genetics , Receptors, Cell Surface/genetics , Genes, Insect , Pheromones
6.
Ecol Evol ; 12(4): e8821, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35432924

ABSTRACT

Adaptive introgression is ubiquitous in animals, but experimental support for its role in driving speciation remains scarce. In the absence of conscious selection, admixed laboratory strains of Drosophila asymmetrically and progressively lose alleles from one parental species and reproductive isolation against the predominant parent ceases after 10 generations. Here, we selectively introgressed during 1 year light pigmentation genes of D. santomea into the genome of its dark sibling D. yakuba, and vice versa. We found that the pace of phenotypic change differed between the species and the sexes and identified through genome sequencing common as well as distinct introgressed loci in each species. Mating assays showed that assortative mating between introgressed flies and both parental species persisted even after 4 years (~60 generations) from the end of the selection. Those results indicate that selective introgression of as low as 0.5% of the genome can beget morphologically distinct and reproductively isolated strains, two prerequisites for the delimitation of new species. Our findings hence represent a significant step toward understanding the genome-wide dynamics of speciation-through-introgression.

7.
Fly (Austin) ; 16(1): 128-151, 2022 12.
Article in English | MEDLINE | ID: mdl-35575031

ABSTRACT

The model organism Drosophila melanogaster has become a focal system for investigations of rapidly evolving genital morphology as well as the development and functions of insect reproductive structures. To follow up on a previous paper outlining unifying terminology for the structures of the male terminalia in this species, we offer here a detailed description of the female terminalia of D. melanogaster. Informative diagrams and micrographs are presented to provide a comprehensive overview of the external and internal reproductive structures of females. We propose a collection of terms and definitions to standardize the terminology associated with the female terminalia in D. melanogaster and we provide a correspondence table with the terms previously used. Unifying terminology for both males and females in this species will help to facilitate communication between various disciplines, as well as aid in synthesizing research across publications within a discipline that has historically focused principally on male features. Our efforts to refine and standardize the terminology should expand the utility of this important model system for addressing questions related to the development and evolution of animal genitalia, and morphology in general.


Subject(s)
Drosophila melanogaster , Genitalia , Animals , Female , Male
8.
Mitochondrial DNA A DNA Mapp Seq Anal ; 32(5-8): 153-161, 2021.
Article in English | MEDLINE | ID: mdl-35137659

ABSTRACT

Pleistocene climatic changes have played a major role in the evolution of Brazilian Atlantic Forest and South America biodiversity but their impacts on the genetic structure of widely distributed species remain unclear. Here, we investigate mitochondrial DNA (mtDNA) diversity in 21 geographical populations of Drosophila sturtevanti, Nucleotide sequences of the cytochrome C oxidase subunits I and II genes (COI and COII, respectively) from 163 individuals, showed a significant north-south structure, in spite of an overall low level of variation. The haplotypes clustered in three groups that showed strong correlations with geographical and climatic variables, suggesting that local adaptations might have contributed to differentiation within the species. Coalescent-based analyses indicated that the three clusters have differentiated nearly ∼17.000 years ago, suggesting a major role for Pleistocene changes in shaping current day distributions and differentiation of widespread Neotropical species.

9.
Zootaxa ; 4980(2): 269292, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34186980

ABSTRACT

Although the biological concept of species is well established in animals, sometimes the decision about the specific status of a new species is difficult and hence requires support of an integrative analysis of several character sets. To date, the species Drosophila sturtevanti, D. magalhaesi, D. milleri and D. dacunhai, belonging to the sturtevanti subgroup of the Neotropical saltans species group, are identified mainly by the aedeagus morphology, but also present some differences in spot coloration and patterning of the female sixth tergite and in the shape and size of the spermathecae, parallel to a pattern of reproductive isolation. In the present study, we describe a novel saltans group species from French Guiana belonging to the sturtevanti subgroup. Our species designation is based on an integrative approach covering (i) aedeagi and spermathecae morphology by scanning electron microscopy, (ii) analysis of female sixth-tergite color, (iii) morphometrical analysis of aedeagi and wings, (iv) analysis of partial sequence of the COI, COII and ND4 mitochondrial genes as well as (v) intercrosses for analysis of reproductive isolation. The comparative analysis of the results on these markers with those of D. sturtevanti, D. milleri and D. dacunhai supports that this line belongs to a new species of the sturtevanti subgroup that we name Drosophila lehrmanae sp. nov. in honor of Prof. Lee Ehrman´s 85th birthday.


Subject(s)
Drosophila/anatomy & histology , Drosophila/classification , Animals , Female , French Guiana , Genes, Mitochondrial , Phylogeny
10.
Evol Dev ; 12(3): 288-95, 2010.
Article in English | MEDLINE | ID: mdl-20565539

ABSTRACT

The phylogenetic information content of different developmental stages is a long-standing issue in the study of development and evolution. We performed phylogenetic analyses of 51 body segmentation genes in 12 species of Drosophila in order to investigate the impact of the mode of evolution of development on phylogeny inference. Previous studies of these genes in Drosophila using pairwise phenetic comparisons at the species group level revealed the presence of an "hourglass model" (HG), wherein mid-embryonic stages are the most evolutionarily constrained. We utilized two character-based approaches: taxonomic congruence using the relative consensus fork index (RCFI), in which phylogenies are inferred from each gene separately and compared with a total evidence tree (TET), and partitioned simultaneous analysis using several indices such as branch support (BS) and localized incongruence length difference (LILD) test. We also proposed a new index, the recapitulatory index (R), which divides the number of synapomorphies on the total number of informative characters in a data set. Polynomial adjustment of both BS and R indices showed strong support for the hourglass model regardless of the taxonomic level (species subgroup vs. subgenera), showing less phylogenetic information content for mid-developmental stages (mainly the zygotic segment polarity stage). Significant LILD scores were randomly distributed among developmental stages revealing the absence of differential selective constraints, but were significantly related to chromosomal location showing physical (linkage) impact on phylogenetic incongruence. RCFI was the most sensitive measure to taxonomic level, having a convex parabola at the species subgroup level in support of the hourglass model and a concave parabola at the subgeneric level in support of the adaptive penetrance model. This time-dependent discrepancy of best fit developmental model parallels previous conflicting results from the vertebrates. Because of the quasi-phenetic nature of this index, we argue that the discrepancy is due to the evolutionary rate heterogeneity of developmental genes rather than to fundamental differences among organisms. We suggest that simultaneous character-based analyses give better macroevolutionary support to the hourglass model of the developmental constraints on genome evolution than pairwise phenetic comparisons.


Subject(s)
Drosophila/genetics , Animals , Chromosome Mapping , Drosophila/classification , Models, Theoretical , Phylogeny , Species Specificity
11.
Mol Phylogenet Evol ; 57(2): 509-17, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20800099

ABSTRACT

DNA barcoding has recently been proposed as a promising tool for the (1) rapid assignment of unknown samples to described species by non-expert workers and (2) a potential method of new species discovery based on degree of DNA sequence divergence. Two broad methods have been used, one based on degree of DNA sequence variation, within and between species and another requiring the recovery of species as discrete clades (monophyly) on a phylogenetic tree. An alternative method relies on the identification of a set of specific diagnostic nucleotides for a given species (characters). The genus Drosophila has long served as a model system in genetics, development, ecology and evolutionary biology. As a result of this work, species boundaries within this genus are quite well delimited, with most taxa being defined by morphological characters and also conforming to a biological species concept (e.g., partial or complete reproductive isolation has used to erect and define species). In addition, some of the species in this group have also been subjected to phylogenetic analysis, yielding cases where taxa both conform and conflict with a phylogenetic species concept. Here, we analyzed 1058 COI sequences belonging to 68 species belonging to Drosophila and its allied genus Zaprionus and with more than a single representative to assess the performance of the three DNA barcoding methods. 26% of the species could not be defined using distance methods, i.e. had a barcoding gap of ≤ 0, and 23% were not monophyletic. We focused then on four groups of closely-related species whose taxonomy is well-established on non-molecular basis (e.g., morphology, geography, reproductive isolation) and to which most of the problematic species belonged. We showed that characters performed better than other approaches in the case of paraphyletic species, but all methods failed in the case of polyphyletic species. For these polyphyletic species, other sources of evidence (e.g., morphology, geography, reproductive isolation) are more relevant than COI sequences, highlighting the limitation of DNA barcoding and the needs for integrative taxonomy approaches. In conclusion, DNA barcoding of Drosophila shows no reason to alter the 250 years old tradition of character-based taxonomy, and many reasons to shy away from the alternatives.


Subject(s)
DNA Barcoding, Taxonomic/methods , Drosophila/classification , Drosophila/genetics , Animals , Phylogeny , Species Specificity
12.
Mol Phylogenet Evol ; 55(1): 335-339, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19761854

ABSTRACT

The Zaprionus genus group comprises three drosophilid genera (Zaprionus, Phorticella and Samoaia) that are thought to be related to the Drosophila immigrans species group. We revised the phylogenetic relationships among the three genera and their placement within the subfamily Drosophilinae using one mitochondrial (COII) and one nuclear (Amyrel) gene. The Bayesian tree inferred from concatenated amino acid sequences of the two genes strongly suggests the polyphyly of the Zaprionus genus group and of each of the genera Zaprionus and Phorticella. Paraphyly of the D.immigrans species group was also shown here; the quadrilineata subgroup formed the sister clade to the genus Samoaia. These results suggest the necessity of taxonomic revisions for some relevant genera and species groups included within the genus Drosophila.


Subject(s)
Drosophilidae/genetics , Evolution, Molecular , Phylogeny , Animals , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Drosophilidae/classification , Sequence Alignment , Sequence Analysis, DNA , Species Specificity
13.
Genes (Basel) ; 12(1)2020 12 29.
Article in English | MEDLINE | ID: mdl-33383708

ABSTRACT

Understanding how organisms adapt to environmental changes is a major question in evolution and ecology. In particular, the role of ancestral variation in rapid adaptation remains unclear because its trace on genetic variation, known as soft selective sweep, is often hardly recognizable from genome-wide selection scans. Here, we investigate the evolution of chemosensory genes in Drosophila yakuba mayottensis, a specialist subspecies on toxic noni (Morinda citrifolia) fruits on the island of Mayotte. We combine population genomics analyses and behavioral assays to evaluate the level of divergence in chemosensory genes and perception of noni chemicals between specialist and generalist subspecies of D. yakuba. We identify a signal of soft selective sweep on a handful of genes, with the most diverging ones involving a cluster of gustatory receptors expressed in bitter-sensing neurons. Our results highlight the potential role of ancestral genetic variation in promoting host plant specialization in herbivorous insects and identify a number of candidate genes underlying behavioral adaptation.


Subject(s)
Drosophila/physiology , Food Preferences , Herbivory/genetics , Morinda/parasitology , Adaptation, Biological/genetics , Animals , Chemoreceptor Cells/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fruit , Genes, Insect/genetics , Morinda/chemistry , Selection, Genetic , Taste/genetics
14.
Mol Phylogenet Evol ; 53(2): 404-11, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19559092

ABSTRACT

The acridian genus Schistocerca comprises about 50 species which are endemic to the New World, except the Old World locust S. gregaria. Their morphological identification is rendered difficult by phase polyphenism, geographical overlap due to migrations or swarming, the difficulty to easily differentiate genitalia and the occurrence of interspecific hybrids. The three species reported from Peru include the swarming species S. interrita, a pest that can be recognized only by taxonomists. We show that it can be unambiguously identified using a mitochondrial DNA fragment known to have barcoding properties in this genus. We used several methods to delimitate Peruvian species. While S. interrita and S. pallens were well characterized, S. piceifrons peruviana was split into several taxa by a phylogeny-based method, whereas a combination of population genetics methods led one to identify only the three nominal species. A tentative reconstruction of the species history shows that several populations of S. piceifrons peruviana have recently increased in number, while exchanging some migrants, whereas an isolated population at the northern margin of the species range is substantially differentiated while exchanging no migrants with the others. This complex history has resulted in an atypical lineage pattern that appears to have confounded the standard assumptions underlying available species delimitation methods. Because of its behavioral property which tends to keep it panmictic, the identification of the swarming S. interrita remained unaffected.


Subject(s)
Genetics, Population , Grasshoppers/genetics , Phylogeny , Animals , DNA, Mitochondrial/genetics , Gene Flow , Grasshoppers/classification , Peru , Sequence Analysis, DNA , Species Specificity
15.
Evol Lett ; 3(3): 286-298, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31171984

ABSTRACT

Homoplasy is a fundamental phenomenon in evolutionary biology but an appraisal of its extent at the morphological level is still lacking. Here, we analyzed the evolution of 490 morphological characters conceptualized among 56 drosophilid species. We found that two thirds of morphological changes were homoplastic and that the level of homoplasy depended on the stage of development and the type of the organ, with the adult terminalia being the least homoplastic. In spite of its predominance at the character change level, homoplasy accounts for only ∼13% of between species similarities in pairwise comparisons. These results provide empirical insights on the limits of morphological changes and the frequency of recurrent evolution.

16.
Fly (Austin) ; 13(1-4): 51-64, 2019.
Article in English | MEDLINE | ID: mdl-31401934

ABSTRACT

Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.


Subject(s)
Drosophila melanogaster/anatomy & histology , Genitalia, Male/anatomy & histology , Terminology as Topic , Animals , Male
17.
Curr Biol ; 28(21): 3450-3457.e13, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30344115

ABSTRACT

Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.


Subject(s)
Biological Evolution , Drosophila Proteins/genetics , Drosophila/anatomy & histology , Drosophila/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Animals , Binding Sites , Drosophila Proteins/metabolism , Evolution, Molecular , Genitalia, Male/anatomy & histology , Homeodomain Proteins/metabolism , Male , Mutation , Nucleotides/genetics
18.
J Genet ; 86(2): 149-58, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17968142

ABSTRACT

Mesosternal (MS) bristles in Drosophila are a pair of machrochaetae found at the sternal end of the sternopleural (STP) microchaetae, and are thought to be invariable. In a closely related drosophilid genus, Zaprionus, their number is four and, in contrast to Drosophila, they show interspecific and intraspecific variability. The genetic basis of MS bristle number variability was studied in Z. indianus, the only cosmopolitan species of the genus. The trait responded rapidly to selection and two lines were obtained, one lacking any bristles (0-0) and the other bearing the normal phenotype (2-2). Other symmetrical phenotypes, (1-1) and (3-3), could also be selected for, but with lesser success. By contrast, STP bristle number did not vary significantly between the two lines (0-0) and (2-2), revealing its genetic independence from MS bristle number. Reciprocal crosses between these two lines showed that MS bristle number is mainly influenced by a major gene on the X chromosome (i.e. F(1) males always resembled their mothers) with codominant expression (i.e. heterozygous F(1) females harboured an average phenotype of 2 bristles). However, trait penetrance was incomplete and backcrosses revealed that this variability was partly due to genetic modifiers, most likely autosomal. The canalization of MS bristle number was investigated under different temperatures, and the increased appearance of abnormal phenotypes mainly occurred at extreme temperatures. There was a bias, however, towards bristle loss, as shown by a liability (developmental map) analysis. Finally, when ancestral and introduced populations were compared, the latter were far less stable, suggesting that genetic bottlenecks may perturb the MS bristle number canalization system. MS bristle number, thus, appears to be an excellent model for investigating developmental canalization at both the quantitative and the molecular level.


Subject(s)
Cilia/genetics , Drosophilidae/anatomy & histology , Drosophilidae/genetics , Genes, X-Linked , Genetic Variation , Quantitative Trait, Heritable , Animals , Cell Count , Crosses, Genetic , Female , Geography , Phylogeny , Selection, Genetic , Species Specificity , Sternum
19.
Fly (Austin) ; 11(1): 37-45, 2017 01 02.
Article in English | MEDLINE | ID: mdl-27560369

ABSTRACT

A full understanding of how ecological factors drive the fixation of genetic changes during speciation is obscured by the lack of appropriate models with clear natural history and powerful genetic toolkits. In a recent study, we described an early stage of ecological speciation in a population of the generalist species Drosophila yakuba (melanogaster subgroup) on the island of Mayotte (Indian Ocean). On this island, flies are strongly associated with the toxic fruits of noni (Morinda citrifolia) and show a partial degree of pre-zygotic reproductive isolation. Here, I mine the nuclear and mitochondrial genomes and provide a full morphological description of this population. Only 29 nuclear sites (< 4 × 10-7 of the genome) are fixed in this population and absent from 3 mainland populations and the closest relative D. santomea, but no mitochondrial or morphological character distinguish Mayotte flies from the mainland. This result indicates that physiological and behavioral traits may evolve faster than morphology at the early stages of speciation. Based on these differences, the Mayotte population is designated as a new subspecies, Drosophila yakuba mayottensis subsp. nov., and its strong potential in understanding the genetics of speciation and plant-insect interactions is discussed.


Subject(s)
Drosophila/classification , Drosophila/genetics , Genetic Speciation , Adaptation, Biological , Animals , Comoros , DNA, Mitochondrial , Drosophila/physiology , Ecology , Genetic Variation , Genome, Mitochondrial , Reproductive Isolation
20.
Genetics ; 204(3): 1307-1319, 2016 11.
Article in English | MEDLINE | ID: mdl-27638419

ABSTRACT

Unraveling the genetic architecture of adaptive phenotypic divergence is a fundamental quest in evolutionary biology. In Drosophila melanogaster, high-altitude melanism has evolved in separate mountain ranges in sub-Saharan Africa, potentially as an adaptation to UV intensity. We investigated the genetic basis of this melanism in three populations using a new bulk segregant analysis mapping method. We identified 19 distinct QTL regions from nine mapping crosses, with several QTL peaks overlapping between two or all populations, and yet different crosses involving the same melanic population commonly yielded distinct QTL. The strongest QTL often overlapped well-known pigmentation genes, but we typically did not find wide signals of genetic differentiation (FST) between lightly and darkly pigmented populations at these genes. Instead, we found small numbers of highly differentiated SNPs at the probable causative genes. A simulation analysis showed that these patterns of polymorphism were consistent with selection on standing genetic variation. Overall, our results suggest that, even for potentially simpler traits like pigmentation, the complexity of adaptive trait evolution poses important challenges for QTL mapping and population genetic analysis.


Subject(s)
Drosophila melanogaster/genetics , Evolution, Molecular , Melanins/genetics , Animals , Melanins/metabolism , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Skin Pigmentation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL