ABSTRACT
Differential expression analysis of single-cell RNA sequencing (scRNA-seq) data is central for characterizing how experimental factors affect the distribution of gene expression. However, distinguishing between biological and technical sources of cell-cell variability and assessing the statistical significance of quantitative comparisons between cell groups remain challenging. We introduce Memento, a tool for robust and efficient differential analysis of mean expression, variability, and gene correlation from scRNA-seq data, scalable to millions of cells and thousands of samples. We applied Memento to 70,000 tracheal epithelial cells to identify interferon-responsive genes, 160,000 CRISPR-Cas9 perturbed T cells to reconstruct gene-regulatory networks, 1.2 million peripheral blood mononuclear cells (PBMCs) to map cell-type-specific quantitative trait loci (QTLs), and the 50-million-cell CELLxGENE Discover corpus to compare arbitrary cell groups. In all cases, Memento identified more significant and reproducible differences in mean expression compared with existing methods. It also identified differences in variability and gene correlation that suggest distinct transcriptional regulation mechanisms imparted by perturbations.
ABSTRACT
CRISPR-Cas9 genome editing has enabled advanced T cell therapies, but occasional loss of the targeted chromosome remains a safety concern. To investigate whether Cas9-induced chromosome loss is a universal phenomenon and evaluate its clinical significance, we conducted a systematic analysis in primary human T cells. Arrayed and pooled CRISPR screens revealed that chromosome loss was generalizable across the genome and resulted in partial and entire loss of the targeted chromosome, including in preclinical chimeric antigen receptor T cells. T cells with chromosome loss persisted for weeks in culture, implying the potential to interfere with clinical use. A modified cell manufacturing process, employed in our first-in-human clinical trial of Cas9-engineered T cells (NCT03399448), reduced chromosome loss while largely preserving genome editing efficacy. Expression of p53 correlated with protection from chromosome loss observed in this protocol, suggesting both a mechanism and strategy for T cell engineering that mitigates this genotoxicity in the clinic.
Subject(s)
CRISPR-Cas Systems , Chromosome Aberrations , Gene Editing , T-Lymphocytes , Humans , Chromosomes , CRISPR-Cas Systems/genetics , DNA Damage , Gene Editing/methods , Clinical Trials as TopicABSTRACT
Chronic stimulation can cause T cell dysfunction and limit the efficacy of cellular immunotherapies. Improved methods are required to compare large numbers of synthetic knockin (KI) sequences to reprogram cell functions. Here, we developed modular pooled KI screening (ModPoKI), an adaptable platform for modular construction of DNA KI libraries using barcoded multicistronic adaptors. We built two ModPoKI libraries of 100 transcription factors (TFs) and 129 natural and synthetic surface receptors (SRs). Over 30 ModPoKI screens across human TCR- and CAR-T cells in diverse conditions identified a transcription factor AP4 (TFAP4) construct that enhanced fitness of chronically stimulated CAR-T cells and anti-cancer function in vitro and in vivo. ModPoKI's modularity allowed us to generate an â¼10,000-member library of TF combinations. Non-viral KI of a combined BATF-TFAP4 polycistronic construct enhanced fitness. Overexpressed BATF and TFAP4 co-occupy and regulate key gene targets to reprogram T cell function. ModPoKI facilitates the discovery of complex gene constructs to program cellular functions.
Subject(s)
Cell- and Tissue-Based Therapy , Exercise , Humans , Gene Library , Immunotherapy , ResearchABSTRACT
Adoptive transfer of genetically modified immune cells holds great promise for cancer immunotherapy. CRISPR knockin targeting can improve cell therapies, but more high-throughput methods are needed to test which knockin gene constructs most potently enhance primary cell functions in vivo. We developed a widely adaptable technology to barcode and track targeted integrations of large non-viral DNA templates and applied it to perform pooled knockin screens in primary human T cells. Pooled knockin of dozens of unique barcoded templates into the T cell receptor (TCR)-locus revealed gene constructs that enhanced fitness in vitro and in vivo. We further developed pooled knockin sequencing (PoKI-seq), combining single-cell transcriptome analysis and pooled knockin screening to measure cell abundance and cell state ex vivo and in vivo. This platform nominated a novel transforming growth factor ß (TGF-ß) R2-41BB chimeric receptor that improved solid tumor clearance. Pooled knockin screening enables parallelized re-writing of endogenous genetic sequences to accelerate discovery of knockin programs for cell therapies.
Subject(s)
Gene Knock-In Techniques/methods , Genetic Engineering/methods , Immunotherapy/methods , Animals , Blood Cells , CRISPR-Cas Systems/genetics , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Humans , Mice , Mice, Inbred NOD , Mice, SCID , RNA, Guide, Kinetoplastida/genetics , Single-Cell Analysis/methods , T-Lymphocytes , Transcriptome/geneticsABSTRACT
Responses to anti-PD-1 immunotherapy occur but are infrequent in bladder cancer. The specific T cells that mediate tumor rejection are unknown. T cells from human bladder tumors and non-malignant tissue were assessed with single-cell RNA and paired T cell receptor (TCR) sequencing of 30,604 T cells from 7 patients. We find that the states and repertoires of CD8+ T cells are not distinct in tumors compared with non-malignant tissues. In contrast, single-cell analysis of CD4+ T cells demonstrates several tumor-specific states, including multiple distinct states of regulatory T cells. Surprisingly, we also find multiple cytotoxic CD4+ T cell states that are clonally expanded. These CD4+ T cells can kill autologous tumors in an MHC class II-dependent fashion and are suppressed by regulatory T cells. Further, a gene signature of cytotoxic CD4+ T cells in tumors predicts a clinical response in 244 metastatic bladder cancer patients treated with anti-PD-L1.
Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Biomarkers, Pharmacological/analysis , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic/genetics , Genes, MHC Class II , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor/genetics , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis/methods , T-Lymphocytes, Regulatory , Urinary Bladder Neoplasms/immunologyABSTRACT
Differentiation of proinflammatory CD4+ conventional T cells (Tconv) is critical for productive antitumor responses yet their elicitation remains poorly understood. We comprehensively characterized myeloid cells in tumor draining lymph nodes (tdLN) of mice and identified two subsets of conventional type-2 dendritic cells (cDC2) that traffic from tumor to tdLN and present tumor-derived antigens to CD4+ Tconv, but then fail to support antitumor CD4+ Tconv differentiation. Regulatory T cell (Treg) depletion enhanced their capacity to elicit strong CD4+ Tconv responses and ensuing antitumor protection. Analogous cDC2 populations were identified in patients, and as in mice, their abundance relative to Treg predicts protective ICOS+ PD-1lo CD4+ Tconv phenotypes and survival. Further, in melanoma patients with low Treg abundance, intratumoral cDC2 density alone correlates with abundant CD4+ Tconv and with responsiveness to anti-PD-1 therapy. Together, this highlights a pathway that restrains cDC2 and whose reversal enhances CD4+ Tconv abundance and controls tumor growth.
Subject(s)
CD4-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Animals , Antigens, Neoplasm/immunology , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation , Cell Line, Tumor , Cytokines/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Diphtheria Toxin/immunology , Forkhead Transcription Factors/metabolism , Humans , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Lymphocyte Activation , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Chemokine/metabolism , T-Lymphocytes, Regulatory/immunology , Tumor MicroenvironmentABSTRACT
Human regulatory T (Treg) cells are essential for immune homeostasis. The transcription factor FOXP3 maintains Treg cell identity, yet the complete set of key transcription factors that control Treg cell gene expression remains unknown. Here, we used pooled and arrayed Cas9 ribonucleoprotein screens to identify transcription factors that regulate critical proteins in primary human Treg cells under basal and proinflammatory conditions. We then generated 54,424 single-cell transcriptomes from Treg cells subjected to genetic perturbations and cytokine stimulation, which revealed distinct gene networks individually regulated by FOXP3 and PRDM1, in addition to a network coregulated by FOXO1 and IRF4. We also discovered that HIVEP2, to our knowledge not previously implicated in Treg cell function, coregulates another gene network with SATB1 and is important for Treg cell-mediated immunosuppression. By integrating CRISPR screens and single-cell RNA-sequencing profiling, we have uncovered transcriptional regulators and downstream gene networks in human Treg cells that could be targeted for immunotherapies.
Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transcriptome , Biomarkers , CRISPR-Cas Systems , Disease Susceptibility , Gene Knockout Techniques , Gene Targeting , Graft vs Host Disease/etiology , High-Throughput Nucleotide Sequencing , HumansABSTRACT
Type 1 interferon (IFN) is a key mediator of organismal responses to pathogens, eliciting prototypical "interferon signature genes" that encode antiviral and inflammatory mediators. For a global view of IFN signatures and regulatory pathways, we performed gene expression and chromatin analyses of the IFN-induced response across a range of immunocyte lineages. These distinguished ISGs by cell-type specificity, kinetics, and sensitivity to tonic IFN and revealed underlying changes in chromatin configuration. We combined 1,398 human and mouse datasets to computationally infer ISG modules and their regulators, validated by genetic analysis in both species. Some ISGs are controlled by Stat1/2 and Irf9 and the ISRE DNA motif, but others appeared dependent on non-canonical factors. This regulatory framework helped to interpret JAK1 blockade pharmacology, different clusters being affected under tonic or IFN-stimulated conditions, and the IFN signatures previously associated with human diseases, revealing unrecognized subtleties in disease footprints, as affected by human ancestry.
Subject(s)
Gene Regulatory Networks , Interferon Type I/immunology , Interferon Type I/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , Datasets as Topic , Humans , Janus Kinases/metabolism , Mice , Mice, Inbred C57BL , Receptor, Interferon alpha-beta/metabolismABSTRACT
Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells and provide a genetic approach for dissection of mammalian cell circuits.
Subject(s)
CRISPR-Cas Systems , Genetic Techniques , Immunity, Innate , Animals , Bone Marrow Cells/immunology , Cell Differentiation , Cell Survival , Dendritic Cells/cytology , Dendritic Cells/immunology , Gene Knockout Techniques , Gene Regulatory Networks , Hexosyltransferases/metabolism , Membrane Proteins/metabolism , Mice , Mice, Transgenic , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/immunologyABSTRACT
The temporal lobe of the human brain contains the entorhinal cortex (EC). This region of the brain is a highly interconnected integrative hub for sensory and spatial information; it also has a key role in episodic memory formation and is the main source of cortical hippocampal inputs1-4. The human EC continues to develop during childhood5, but neurogenesis and neuronal migration to the EC are widely considered to be complete by birth. Here we show that the human temporal lobe contains many young neurons migrating into the postnatal EC and adjacent regions, with a large tangential stream persisting until the age of around one year and radial dispersal continuing until around two to three years of age. By contrast, we found no equivalent postnatal migration in rhesus macaques (Macaca mulatta). Immunostaining and single-nucleus RNA sequencing of ganglionic eminence germinal zones, the EC stream and the postnatal EC revealed that most migrating cells in the EC stream are derived from the caudal ganglionic eminence and become LAMP5+RELN+ inhibitory interneurons. These late-arriving interneurons could continue to shape the processing of sensory and spatial information well into postnatal life, when children are actively interacting with their environment. The EC is one of the first regions of the brain to be affected in Alzheimer's disease, and previous work has linked cognitive decline to the loss of LAMP5+RELN+ cells6,7. Our investigation reveals that many of these cells arrive in the EC through a major postnatal migratory stream in early childhood.
Subject(s)
Cell Movement , Neurons , Temporal Lobe , Animals , Child, Preschool , Humans , Infant , Entorhinal Cortex/cytology , Entorhinal Cortex/physiology , Ganglionic Eminence/cytology , Interneurons/cytology , Interneurons/physiology , Macaca mulatta , Neurons/cytology , Neurons/physiology , Single-Cell Gene Expression Analysis , Temporal Lobe/cytology , Temporal Lobe/growth & developmentABSTRACT
CRISPR-enabled screening is a powerful tool for the discovery of genes that control T cell function and has nominated candidate targets for immunotherapies1-6. However, new approaches are required to probe specific nucleotide sequences within key genes. Systematic mutagenesis in primary human T cells could reveal alleles that tune specific phenotypes. DNA base editors are powerful tools for introducing targeted mutations with high efficiency7,8. Here we develop a large-scale base-editing mutagenesis platform with the goal of pinpointing nucleotides that encode amino acid residues that tune primary human T cell activation responses. We generated a library of around 117,000 single guide RNA molecules targeting base editors to protein-coding sites across 385 genes implicated in T cell function and systematically identified protein domains and specific amino acid residues that regulate T cell activation and cytokine production. We found a broad spectrum of alleles with variants encoding critical residues in proteins including PIK3CD, VAV1, LCP2, PLCG1 and DGKZ, including both gain-of-function and loss-of-function mutations. We validated the functional effects of many alleles and further demonstrated that base-editing hits could positively and negatively tune T cell cytotoxic function. Finally, higher-resolution screening using a base editor with relaxed protospacer-adjacent motif requirements9 (NG versus NGG) revealed specific structural domains and protein-protein interaction sites that can be targeted to tune T cell functions. Base-editing screens in primary immune cells thus provide biochemical insights with the potential to accelerate immunotherapy design.
Subject(s)
Alleles , Gene Editing , Mutagenesis , T-Lymphocytes , Humans , Amino Acids/genetics , CRISPR-Cas Systems/genetics , Mutagenesis/genetics , RNA, Guide, CRISPR-Cas Systems/genetics , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Lymphocyte Activation , Cytokines/biosynthesis , Cytokines/metabolism , Gain of Function Mutation , Loss of Function MutationABSTRACT
Group 2 innate lymphoid cells (ILC2s) and CD4+ type 2 helper T cells (TH2 cells) are defined by their similar effector cytokines, which together mediate the features of allergic immunity. We found that tissue ILC2s and TH2 cells differentiated independently but shared overlapping effector function programs that were mediated by exposure to the tissue-derived cytokines interleukin 25 (IL-25), IL-33 and thymic stromal lymphopoietin (TSLP). Loss of these three tissue signals did not affect lymph node priming, but abrogated the terminal differentiation of effector TH2 cells and adaptive lung inflammation in a T cell-intrinsic manner. Our findings suggest a mechanism by which diverse perturbations can activate type 2 immunity and reveal a shared local-tissue-elicited checkpoint that can be exploited to control both innate and adaptive allergic inflammation.
Subject(s)
Cytokines/metabolism , Hypersensitivity/immunology , Immunity, Innate , Interleukin-17/metabolism , Interleukin-33/metabolism , Lymphocytes/immunology , Th2 Cells/immunology , Adaptive Immunity , Allergens/immunology , Animals , Aspergillus niger , Bee Venoms/immunology , Bees , Cell Differentiation , Cells, Cultured , Cytokines/genetics , Dermatophagoides farinae , Interleukin-17/genetics , Interleukin-33/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Thymic Stromal LymphopoietinABSTRACT
Neuroanatomists have long speculated that expanded primate brains contain an increased morphological diversity of inhibitory neurons (INs)1, and recent studies have identified primate-specific neuronal populations at the molecular level2. However, we know little about the developmental mechanisms that specify evolutionarily novel cell types in the brain. Here, we reconstruct gene expression trajectories specifying INs generated throughout the neurogenic period in macaques and mice by analysing the transcriptomes of 250,181 cells. We find that the initial classes of INs generated prenatally are largely conserved among mammals. Nonetheless, we identify two contrasting developmental mechanisms for specifying evolutionarily novel cell types during prenatal development. First, we show that recently identified primate-specific TAC3 striatal INs are specified by a unique transcriptional programme in progenitors followed by induction of a distinct suite of neuropeptides and neurotransmitter receptors in new-born neurons. Second, we find that multiple classes of transcriptionally conserved olfactory bulb (OB)-bound precursors are redirected to expanded primate white matter and striatum. These classes include a novel peristriatal class of striatum laureatum neurons that resemble dopaminergic periglomerular cells of the OB. We propose an evolutionary model in which conserved initial classes of neurons supplying the smaller primate OB are reused in the enlarged striatum and cortex. Together, our results provide a unified developmental taxonomy of initial classes of mammalian INs and reveal multiple developmental mechanisms for neural cell type evolution.
Subject(s)
Biological Evolution , Corpus Striatum , Embryonic Development , Macaca , Neurogenesis , Neurons , Olfactory Bulb , Animals , Corpus Striatum/growth & development , Dopaminergic Neurons , Female , Macaca/growth & development , Mammals , Mice , Neurogenesis/physiology , Olfactory Bulb/physiology , Pregnancy , PrimatesABSTRACT
Infectious diseases are among the strongest selective pressures driving human evolution1,2. This includes the single greatest mortality event in recorded history, the first outbreak of the second pandemic of plague, commonly called the Black Death, which was caused by the bacterium Yersinia pestis3. This pandemic devastated Afro-Eurasia, killing up to 30-50% of the population4. To identify loci that may have been under selection during the Black Death, we characterized genetic variation around immune-related genes from 206 ancient DNA extracts, stemming from two different European populations before, during and after the Black Death. Immune loci are strongly enriched for highly differentiated sites relative to a set of non-immune loci, suggesting positive selection. We identify 245 variants that are highly differentiated within the London dataset, four of which were replicated in an independent cohort from Denmark, and represent the strongest candidates for positive selection. The selected allele for one of these variants, rs2549794, is associated with the production of a full-length (versus truncated) ERAP2 transcript, variation in cytokine response to Y. pestis and increased ability to control intracellular Y. pestis in macrophages. Finally, we show that protective variants overlap with alleles that are today associated with increased susceptibility to autoimmune diseases, providing empirical evidence for the role played by past pandemics in shaping present-day susceptibility to disease.
Subject(s)
DNA, Ancient , Genetic Predisposition to Disease , Immunity , Plague , Selection, Genetic , Yersinia pestis , Humans , Aminopeptidases/genetics , Aminopeptidases/immunology , Plague/genetics , Plague/immunology , Plague/microbiology , Plague/mortality , Yersinia pestis/immunology , Yersinia pestis/pathogenicity , Selection, Genetic/immunology , Europe/epidemiology , Europe/ethnology , Immunity/genetics , Datasets as Topic , London/epidemiology , Denmark/epidemiologyABSTRACT
Decades of work have elucidated cytokine signalling and transcriptional pathways that control T cell differentiation and have led the way to targeted biologic therapies that are effective in a range of autoimmune, allergic and inflammatory diseases. Recent evidence indicates that obesity and metabolic disease can also influence the immune system1-7, although the mechanisms and effects on immunotherapy outcomes remain largely unknown. Here, using two models of atopic dermatitis, we show that lean and obese mice mount markedly different immune responses. Obesity converted the classical type 2 T helper (TH2)-predominant disease associated with atopic dermatitis to a more severe disease with prominent TH17 inflammation. We also observed divergent responses to biologic therapies targeting TH2 cytokines, which robustly protected lean mice but exacerbated disease in obese mice. Single-cell RNA sequencing coupled with genome-wide binding analyses revealed decreased activity of nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) in TH2 cells from obese mice relative to lean mice. Conditional ablation of PPARγ in T cells revealed that PPARγ is required to focus the in vivo TH response towards a TH2-predominant state and prevent aberrant non-TH2 inflammation. Treatment of obese mice with a small-molecule PPARγ agonist limited development of TH17 pathology and unlocked therapeutic responsiveness to targeted anti-TH2 biologic therapies. These studies reveal the effects of obesity on immunological disease and suggest a precision medicine approach to target the immune dysregulation caused by obesity.
Subject(s)
Dermatitis, Atopic , PPAR gamma , Animals , Cytokines/metabolism , Disease Models, Animal , Inflammation/metabolism , Mice , Obesity/metabolism , PPAR gamma/agonists , PPAR gamma/metabolism , Precision Medicine , Sequence Analysis, RNA , Th2 Cells/metabolismABSTRACT
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Subject(s)
Genomics , Humans , SyndromeABSTRACT
Population-scale single-cell genomics is a transformative approach for unraveling the intricate links between genetic and cellular variation. This approach is facilitated by cutting-edge experimental methodologies, including the development of high-throughput single-cell multiomics and advances in multiplexed environmental and genetic perturbations. Examining the effects of natural or synthetic genetic variants across cellular contexts provides insights into the mutual influence of genetics and the environment in shaping cellular heterogeneity. The development of computational methodologies further enables detailed quantitative analysis of molecular variation, offering an opportunity to examine the respective roles of stochastic, intercellular, and interindividual variation. Future opportunities lie in leveraging long-read sequencing, refining disease-relevant cellular models, and embracing predictive and generative machine learning models. These advancements hold the potential for a deeper understanding of the genetic architecture of human molecular traits, which in turn has important implications for understanding the genetic causes of human disease.
Subject(s)
Genetic Variation , Single-Cell Analysis , Humans , Single-Cell Analysis/methods , Genomics/methods , Machine Learning , Genetics, PopulationABSTRACT
Stromal cells (SCs) establish the compartmentalization of lymphoid tissues critical to the immune response. However, the full diversity of lymph node (LN) SCs remains undefined. Using droplet-based single-cell RNA sequencing, we identified nine peripheral LN non-endothelial SC clusters. Included are the established subsets, Ccl19hi T-zone reticular cells (TRCs), marginal reticular cells, follicular dendritic cells (FDCs), and perivascular cells. We also identified Ccl19lo TRCs, likely including cholesterol-25-hydroxylase+ cells located at the T-zone perimeter, Cxcl9+ TRCs in the T-zone and interfollicular region, CD34+ SCs in the capsule and medullary vessel adventitia, indolethylamine N-methyltransferase+ SCs in the medullary cords, and Nr4a1+ SCs in several niches. These data help define how transcriptionally distinct LN SCs support niche-restricted immune functions and provide evidence that many SCs are in an activated state.
Subject(s)
Lymph Nodes/immunology , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Stromal Cells/immunology , Transcriptome/immunology , Animals , Chemokine CCL19/genetics , Chemokine CCL19/immunology , Chemokine CCL19/metabolism , Dendritic Cells, Follicular/immunology , Dendritic Cells, Follicular/metabolism , Female , Lymph Nodes/metabolism , Lymphoid Tissue/cytology , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Mice, Inbred C57BL , Stromal Cells/metabolismABSTRACT
Although infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has pleiotropic and systemic effects in some individuals1-3, many others experience milder symptoms. Here, to gain a more comprehensive understanding of the distinction between severe and mild phenotypes in the pathology of coronavirus disease 2019 (COVID-19) and its origins, we performed a whole-blood-preserving single-cell analysis protocol to integrate contributions from all major immune cell types of the blood-including neutrophils, monocytes, platelets, lymphocytes and the contents of the serum. Patients with mild COVID-19 exhibit a coordinated pattern of expression of interferon-stimulated genes (ISGs)3 across every cell population, whereas these ISG-expressing cells are systemically absent in patients with severe disease. Paradoxically, individuals with severe COVID-19 produce very high titres of anti-SARS-CoV-2 antibodies and have a lower viral load compared to individuals with mild disease. Examination of the serum from patients with severe COVID-19 shows that these patients uniquely produce antibodies that functionally block the production of the ISG-expressing cells associated with mild disease, by activating conserved signalling circuits that dampen cellular responses to interferons. Overzealous antibody responses pit the immune system against itself in many patients with COVID-19, and perhaps also in individuals with other viral infections. Our findings reveal potential targets for immunotherapies in patients with severe COVID-19 to re-engage viral defence.
Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/physiopathology , Interferons/antagonists & inhibitors , Interferons/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Antibodies, Viral/blood , Antibody Formation , Base Sequence , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin G/immunology , Interferons/metabolism , Male , Neutrophils/immunology , Neutrophils/pathology , Protein Domains , Receptor, Interferon alpha-beta/antagonists & inhibitors , Receptor, Interferon alpha-beta/immunology , Receptor, Interferon alpha-beta/metabolism , Receptors, IgG/immunology , Single-Cell Analysis , Viral Load/immunologyABSTRACT
MOTIVATION: Deep graph learning (DGL) has been widely employed in the realm of ligand-based virtual screening. Within this field, a key hurdle is the existence of activity cliffs (ACs), where minor chemical alterations can lead to significant changes in bioactivity. In response, several DGL models have been developed to enhance ligand bioactivity prediction in the presence of ACs. Yet, there remains a largely unexplored opportunity within ACs for optimizing ligand bioactivity, making it an area ripe for further investigation. RESULTS: We present a novel approach to simultaneously predict and optimize ligand bioactivities through DGL and ACs (OLB-AC). OLB-AC possesses the capability to optimize ligand molecules located near ACs, providing a direct reference for optimizing ligand bioactivities with the matching of original ligands. To accomplish this, a novel attentive graph reconstruction neural network and ligand optimization scheme are proposed. Attentive graph reconstruction neural network reconstructs original ligands and optimizes them through adversarial representations derived from their bioactivity prediction process. Experimental results on nine drug targets reveal that out of the 667 molecules generated through OLB-AC optimization on datasets comprising 974 low-activity, noninhibitor, or highly toxic ligands, 49 are recognized as known highly active, inhibitor, or nontoxic ligands beyond the datasets' scope. The 27 out of 49 matched molecular pairs generated by OLB-AC reveal novel transformations not present in their training sets. The adversarial representations employed for ligand optimization originate from the gradients of bioactivity predictions. Therefore, we also assess OLB-AC's prediction accuracy across 33 different bioactivity datasets. Results show that OLB-AC achieves the best Pearson correlation coefficient (r2) on 27/33 datasets, with an average improvement of 7.2%-22.9% against the state-of-the-art bioactivity prediction methods. AVAILABILITY AND IMPLEMENTATION: The code and dataset developed in this work are available at github.com/Yueming-Yin/OLB-AC.