Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 585
Filter
Add more filters

Publication year range
1.
Cell ; 153(4): 812-27, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23663780

ABSTRACT

Alterations of symbiosis between microbiota and intestinal epithelial cells (IEC) are associated with intestinal and systemic pathologies. Interactions between bacterial products (MAMPs) and Toll-like receptors (TLRs) are known to be mandatory for IEC homeostasis, but how TLRs may time homeostatic functions with circadian changes is unknown. Our functional and molecular dissections of the IEC circadian clock demonstrate that its integrity is required for microbiota-IEC dialog. In IEC, the antiphasic expression of the RORα activator and RevErbα repressor clock output regulators generates a circadian rhythmic TLR expression that converts the temporally arrhythmic microbiota signaling into circadian rhythmic JNK and IKKß activities, which prevents RevErbα activation by PPARα that would disrupt the circadian clock. Moreover, through activation of AP1 and NF-κB, these activities, together with RORα and RevErbα, enable timing homeostatic functions of numerous genes with IEC circadian events. Interestingly, microbiota signaling deficiencies induce a prediabetic syndrome due to ileal corticosterone overproduction consequent to clock disruption.


Subject(s)
Ileum/microbiology , Ileum/physiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiology , Metagenome , Toll-Like Receptors/immunology , Animals , Corticosterone/metabolism , Ileum/immunology , Intestinal Mucosa/immunology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism
2.
Development ; 150(20)2023 10 15.
Article in English | MEDLINE | ID: mdl-37665322

ABSTRACT

One-carbon/folate (1C) metabolism supplies methyl groups required for DNA and histone methylation, and is involved in the maintenance of self-renewal in stem cells. Dihydrofolate reductase (DHFR), a key enzyme in 1C metabolism, is highly expressed in human and mouse neural progenitors at the early stages of neocortical development. Here, we have investigated the role of DHFR in the developing neocortex and report that reducing its activity in human neural organoids and mouse embryonic neocortex accelerates indirect neurogenesis, thereby affecting neuronal composition of the neocortex. Furthermore, we show that decreasing DHFR activity in neural progenitors leads to a reduction in one-carbon/folate metabolites and correlates with modifications of H3K4me3 levels. Our findings reveal an unanticipated role for DHFR in controlling specific steps of neocortex development and indicate that variations in 1C metabolic cues impact cell fate transitions.


Subject(s)
Neocortex , Neurogenesis , Tetrahydrofolate Dehydrogenase , Animals , Humans , Mice , Carbon , Folic Acid , Neurogenesis/genetics , Tetrahydrofolate Dehydrogenase/genetics
3.
Cell ; 145(2): 224-41, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21496643

ABSTRACT

The glucocorticoid (GC) receptor (GR), when liganded to GC, activates transcription through direct binding to simple (+)GRE DNA binding sequences (DBS). GC-induced direct repression via GR binding to complex "negative" GREs (nGREs) has been reported. However, GR-mediated transrepression was generally ascribed to indirect "tethered" interaction with other DNA-bound factors. We report that GC-induces direct transrepression via the binding of GR to simple DBS (IR nGREs) unrelated to (+)GRE. These DBS act on agonist-liganded GR, promoting the assembly of cis-acting GR-SMRT/NCoR repressing complexes. IR nGREs are present in over 1000 mouse/human ortholog genes, which are repressed by GC in vivo. Thus variations in the levels of a single ligand can coordinately turn genes on or off depending in their response element DBS, allowing an additional level of regulation in GR signaling. This mechanism suits GR signaling remarkably well, given that adrenal secretion of GC fluctuates in a circadian and stress-related fashion.


Subject(s)
Receptors, Glucocorticoid/agonists , Repressor Proteins/metabolism , Response Elements , Animals , Cytokines , Dermatitis, Atopic/metabolism , Gene Expression Regulation , Humans , Mice , Promoter Regions, Genetic , Transcription, Genetic , Thymic Stromal Lymphopoietin
4.
Proc Natl Acad Sci U S A ; 120(8): e2214062120, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36791105

ABSTRACT

We demonstrate that there is a tight functional relationship between two highly evolutionary conserved cell processes, i.e., the circadian clock (CC) and the circadian DNA demethylation-methylation of cognate deoxyCpG-rich islands. We have discovered that every circadian clock-controlled output gene (CCG), but not the core clock nor its immediate-output genes, contains a single cognate intronic deoxyCpG-rich island, the demethylation-methylation of which is controlled by the CC. During the transcriptional activation period, these intronic islands are demethylated and, upon dimerization of two YY1 protein binding sites located upstream to the transcriptional enhancer and downstream from the deoxyCpG-rich island, store activating components initially assembled on a cognate active enhancer (a RORE, a D-box or an E-box), in keeping with the generation of a transcriptionally active condensate that boosts the initiation of transcription of their cognate pre-mRNAs. We report how these single intronic deoxyCpG-rich islands are instrumental in such a circadian activation/repression transcriptional process.


Subject(s)
Circadian Clocks , Circadian Clocks/genetics , Promoter Regions, Genetic , Circadian Rhythm/genetics , Regulatory Sequences, Nucleic Acid , CLOCK Proteins/genetics , Demethylation
5.
Mol Cell ; 68(6): 1054-1066.e6, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29225035

ABSTRACT

Cockayne syndrome (CS) is caused by mutations in CSA and CSB. The CSA and CSB proteins have been linked to both promoting transcription-coupled repair and restoring transcription following DNA damage. We show that UV stress arrests transcription of approximately 70% of genes in CSA- or CSB-deficient cells due to the constitutive presence of ATF3 at CRE/ATF sites. We found that CSB, CSA/DDB1/CUL4A, and MDM2 were essential for ATF3 ubiquitination and degradation by the proteasome. ATF3 removal was concomitant with the recruitment of RNA polymerase II and the restart of transcription. Preventing ATF3 ubiquitination by mutating target lysines prevented recovery of transcription and increased cell death following UV treatment. Our data suggest that the coordinate action of CSA and CSB, as part of the ubiquitin/proteasome machinery, regulates the recruitment timing of DNA-binding factors and provide explanations about the mechanism of transcription arrest following genotoxic stress.


Subject(s)
Activating Transcription Factor 3/metabolism , Cockayne Syndrome/pathology , DNA Damage , DNA Helicases/metabolism , DNA Repair Enzymes/metabolism , Mutation , Poly-ADP-Ribose Binding Proteins/metabolism , Transcription Factors/metabolism , Transcription, Genetic , Activating Transcription Factor 3/genetics , Cells, Cultured , Cockayne Syndrome/genetics , Cockayne Syndrome/metabolism , DNA Helicases/genetics , DNA Repair Enzymes/genetics , Humans , Poly-ADP-Ribose Binding Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Proteolysis , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription Factors/genetics , Ubiquitin/metabolism
6.
Nano Lett ; 24(3): 983-992, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38206182

ABSTRACT

On-chip polarization detectors have attracted extensive research interest due to their filterless and ultracompact architecture. However, their polarization-dependent photoresponses cannot be dynamically adjusted, hindering the development toward intelligence. Here, we propose dynamically reconfigurable polarimetry based on in-sensor differentiation of two self-powered photoresponses with orthogonal polarization dependences and tunable responsivities. Such a device can be electrostatically configured in an ultrahigh polarization extinction ratio (PER) mode, where the PER tends to infinity, a Stokes parameter direct sensing mode, where the photoresponse is proportional to S1 or S2 with high accuracy (RMSES1 = 1.5%, RMSES2 = 2.0%), or a background suppressing mode, where the target-background polarization contrast is singularly enhanced. Moreover, the device achieves a polarization angle sensitivity of 0.51 mA·W-1·degree-1 and a specific polarization angle detectivity of 2.8 × 105 cm·Hz1/2·W·degree-1. This scheme is demonstrated throughout the near-to-long-wavelength infrared range, and it will bring a leap for next-generation on-chip polarimeters.

7.
Blood ; 139(24): 3505-3518, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35316324

ABSTRACT

Oncogenic alterations underlying B-cell acute lymphoblastic leukemia (B-ALL) in adults remain incompletely elucidated. To uncover novel oncogenic drivers, we performed RNA sequencing and whole-genome analyses in a large cohort of unresolved B-ALL. We identified a novel subtype characterized by a distinct gene expression signature and the unique association of 2 genomic microdeletions. The 17q21.31 microdeletion resulted in a UBTF::ATXN7L3 fusion transcript encoding a chimeric protein. The 13q12.2 deletion resulted in monoallelic ectopic expression of the homeobox transcription factor CDX2, located 138 kb in cis from the deletion. Using 4C-sequencing and CRISPR interference experiments, we elucidated the mechanism of CDX2 cis-deregulation, involving PAN3 enhancer hijacking. CDX2/UBTF ALL (n = 26) harbored a distinct pattern of additional alterations including 1q gain and CXCR4 activating mutations. Within adult patients with Ph- B-ALL enrolled in GRAALL trials, patients with CDX2/UBTF ALL (n = 17/723, 2.4%) were young (median age, 31 years) and dramatically enriched in females (male/female ratio, 0.2, P = .002). They commonly presented with a pro-B phenotype ALL and moderate blast cell infiltration. They had poor response to treatment including a higher risk of failure to first induction course (19% vs 3%, P = .017) and higher post-induction minimal residual disease (MRD) levels (MRD ≥ 10-4, 93% vs 46%, P < .001). This early resistance to treatment translated into a significantly higher cumulative incidence of relapse (75.0% vs 32.4%, P = .004) in univariate and multivariate analyses. In conclusion, we discovered a novel B-ALL entity defined by the unique combination of CDX2 cis-deregulation and UBTF::ATXN7L3 fusion, representing a high-risk disease in young adults.


Subject(s)
CDX2 Transcription Factor , Pol1 Transcription Initiation Complex Proteins , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors , Adult , CDX2 Transcription Factor/genetics , Female , Genes, Homeobox , Humans , Male , Neoplasm, Residual/genetics , Oncogene Proteins, Fusion , Pol1 Transcription Initiation Complex Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Transcription Factors/genetics
8.
Cardiovasc Diabetol ; 23(1): 172, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755609

ABSTRACT

BACKGROUND: Insulin resistance (IR) is linked to both the complexity of coronary artery lesions and the prognosis of acute coronary syndrome (ACS). However, the precise extent of this correlation and its impact on adverse cardiovascular outcomes in ACS patients remain unclear. Therefore, this study aims to investigate the intricate relationship between IR, coronary artery lesion complexity, and the prognosis of ACS through a cohort design analysis. METHOD: A total of 986 patients with ACS who underwent percutaneous coronary intervention (PCI) were included in this analysis. IR was assessed using the triglyceride-glucose (TyG) index, while coronary artery lesion complexity was evaluated using the SYNTAX score. Pearson's correlation coefficients were utilized to analyze the correlations between variables. The association of the TyG index and SYNTAX score with major adverse cardiovascular events (MACEs) in ACS was investigated using the Kaplan-Meier method, restricted cubic splines (RCS), and adjusted Cox regression. Additionally, a novel 2-stage regression method for survival data was employed in mediation analysis to explore the mediating impact of the SYNTAX score on the association between the TyG index and adverse cardiovascular outcomes, including MACEs and unplanned revascularization. RESULTS: During a median follow-up of 30.72 months, 167 cases of MACEs were documented, including 66 all-cause deaths (6.69%), 26 nonfatal myocardial infarctions (MIs) (2.64%), and 99 unplanned revascularizations (10.04%). The incidence of MACEs, all-cause death, and unplanned revascularization increased with elevated TyG index and SYNTAX score. Both the TyG index (non-linear, P = 0.119) and SYNTAX score (non-linear, P = 0.004) displayed a positive dose-response relationship with MACEs, as illustrated by the RCS curve. Following adjustment for multiple factors, both the TyG index and SYNTAX score emerged as significant predictors of MACEs across the total population and various subgroups. Mediation analysis indicated that the SYNTAX score mediated 25.03%, 18.00%, 14.93%, and 11.53% of the correlation between the TyG index and MACEs in different adjusted models, respectively. Similar mediating effects were observed when endpoint was defined as unplanned revascularization. CONCLUSION: Elevated baseline TyG index and SYNTAX score were associated with a higher risk of MACEs in ACS. Furthermore, the SYNTAX score partially mediated the relationship between the TyG index and adverse cardiovascular outcomes.


Subject(s)
Acute Coronary Syndrome , Biomarkers , Blood Glucose , Coronary Artery Disease , Insulin Resistance , Percutaneous Coronary Intervention , Humans , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/mortality , Acute Coronary Syndrome/therapy , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/epidemiology , Male , Female , Middle Aged , Aged , Percutaneous Coronary Intervention/adverse effects , Percutaneous Coronary Intervention/mortality , Risk Assessment , Risk Factors , Treatment Outcome , Blood Glucose/metabolism , Time Factors , Biomarkers/blood , Coronary Artery Disease/blood , Coronary Artery Disease/therapy , Coronary Artery Disease/mortality , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/diagnosis , Triglycerides/blood , Retrospective Studies , Predictive Value of Tests
9.
Brain Behav Immun ; 117: 270-282, 2024 03.
Article in English | MEDLINE | ID: mdl-38211635

ABSTRACT

Parkinson's disease (PD) is intricately linked to abnormal gut microbiota, yet the specific microbiota influencing clinical outcomes remain poorly understood. Our study identified a deficiency in the microbiota genus Blautia and a reduction in fecal short-chain fatty acid (SCFA) butyrate level in PD patients compared to healthy controls. The abundance of Blautia correlated with the clinical severity of PD. Supplementation with butyrate-producing bacterium B. producta demonstrated neuroprotective effects, attenuating neuroinflammation and dopaminergic neuronal death in mice, consequently ameliorating motor dysfunction. A pivotal inflammatory signaling pathway, the RAS-related pathway, modulated by butyrate, emerged as a key mechanism inhibiting microglial activation in PD. The change of RAS-NF-κB pathway in PD patients was observed. Furthermore, B. producta-derived butyrate demonstrated the inhibition of microglial activation in PD through regulation of the RAS-NF-κB pathway. These findings elucidate the causal relationship between specific gut microbiota and PD, presenting a novel microbiota-based treatment perspective for PD.


Subject(s)
Clostridiales , Microbiota , Parkinson Disease , Humans , Animals , Mice , Microglia , Neuroinflammatory Diseases , NF-kappa B , Butyrates
10.
Soft Matter ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39194357

ABSTRACT

Anionic polyelectrolytes, such as DNA, are attracted to anionic surfaces in the presence of multivalent cations. A major barrier toward molecular-level understanding of these attractive interactions is the paucity of measurements of the binding strength. Here, atomic force microscopy-based single molecule force spectroscopy was used to quantify the binding free energy of double-stranded DNA to an anionic surface, with complementary density functional theory calculations of the binding energies of metal ion-ligand complexes. The results support both electrostatic attraction and ion-specific binding. Our study suggests that the correlated interactions between counterions are responsible for attraction between DNA and an anionic surface, but the strength of this attraction is modulated by the identity of the metal ion. We propose a mechanism in which the strength of metal-ligand binding, as well as the preference for particular binding sites, influence both the concentration dependence and the strength of the DNA-surface interactions.

11.
BMC Urol ; 24(1): 113, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807082

ABSTRACT

BACKGROUND: Hemorrhage is a common complication of nephrostomy and percutaneous nephrolithotripsy, and it is caused by surgical factors. Here we report a rare case of hemorrhage caused by sepsis-related coagulation dysfunction. CASE PRESENTATION: A 72-years-old male patient with bilateral ureteral calculi accompanied by hydronephrosis and renal insufficiency developed sepsis and hemorrhage on the third day after bilateral nephrostomy. After vascular injury was excluded by DSA, the hemorrhage was considered to be sepsis-associated coagulopathy(SAC/SIC), finally the patient recovered well after active symptomatic treatment. CONCLUSIONS: In patients with sepsis and hemorrhage, SAC/SIC cannot be excluded even if coagulation function is slightly abnormal after surgical factors are excluded. For urologists who may encounter similar cases in their general urology practice, it is important to be aware of these unusual causes of hemorrhage.


Subject(s)
Blood Coagulation Disorders , Nephrostomy, Percutaneous , Sepsis , Humans , Male , Aged , Sepsis/etiology , Nephrostomy, Percutaneous/adverse effects , Blood Coagulation Disorders/etiology , Postoperative Hemorrhage/etiology
12.
Nucleic Acids Res ; 50(3): 1351-1369, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35100417

ABSTRACT

Tight control of gene expression networks required for adipose tissue formation and plasticity is essential for adaptation to energy needs and environmental cues. However, the mechanisms that orchestrate the global and dramatic transcriptional changes leading to adipocyte differentiation remain to be fully unraveled. We investigated the regulation of nascent transcription by the sumoylation pathway during adipocyte differentiation using SLAMseq and ChIPseq. We discovered that the sumoylation pathway has a dual function in differentiation; it supports the initial downregulation of pre-adipocyte-specific genes, while it promotes the establishment of the mature adipocyte transcriptional program. By characterizing endogenous sumoylome dynamics in differentiating adipocytes by mass spectrometry, we found that sumoylation of specific transcription factors like PPARγ/RXR and their co-factors are associated with the transcription of adipogenic genes. Finally, using RXR as a model, we found that sumoylation may regulate adipogenic transcription by supporting the chromatin occurrence of transcription factors. Our data demonstrate that the sumoylation pathway supports the rewiring of transcriptional networks required for formation of functional adipocytes. This study also provides the scientists in the field of cellular differentiation and development with an in-depth resource of the dynamics of the SUMO-chromatin landscape, SUMO-regulated transcription and endogenous sumoylation sites during adipocyte differentiation.


Subject(s)
Adipogenesis , Sumoylation , Adipocytes/metabolism , Adipogenesis/genetics , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Transcription Factors/metabolism
13.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33893236

ABSTRACT

The production of proinflammatory cytokines, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), by pathogenic CD4+ T cells is central for mediating tissue injury in inflammatory and autoimmune diseases. However, the factors regulating the T cell pathogenic gene expression program remain unclear. Here, we investigated how the Ikaros transcription factor regulates the global gene expression and chromatin accessibility changes in murine T cells during Th17 polarization and after activation via the T cell receptor (TCR) and CD28. We found that, in both conditions, Ikaros represses the expression of genes from the pathogenic signature, particularly Csf2, which encodes GM-CSF. We show that, in TCR/CD28-activated T cells, Ikaros binds a critical enhancer downstream of Csf2 and is required to regulate chromatin accessibility at multiple regions across this locus. Genome-wide Ikaros binding is associated with more compact chromatin, notably at multiple sites containing NFκB or STAT5 target motifs, and STAT5 or NFκB inhibition prevents GM-CSF production in Ikaros-deficient cells. Importantly, Ikaros also limits GM-CSF production in TCR/CD28-activated human T cells. Our data therefore highlight a critical conserved transcriptional mechanism that antagonizes GM-CSF expression in T cells.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Ikaros Transcription Factor/metabolism , Lymphocyte Activation , Cell Differentiation , Cells, Cultured , Epigenome , Gene Expression Regulation , Humans
14.
Ren Fail ; 46(2): 2367026, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39120108

ABSTRACT

BACKGROUND: Currently, several studies have explored the association between the modified creatinine index (mCI) and prognosis in patients on hemodialysis (HD). However, some of their results are contradictory. Therefore, this study was conducted to comprehensively assess the role of mCI in predicting prognosis in HD patients through meta-analysis. METHODS: We searched and screened literature from PubMed, Embase, Web of Science, and Cochrane databases from their establishment until March 2024. Relevant data were extracted. The statistical analysis was performed using Stata 15.0, RevMan 5.4, and Meta DiSc 1.4 software. RESULTS: The results showed a positive association between mCI and nutritional status in HD patients (BMI r = 0.19, 95% CI: 0.1-0.28, p = .000; albumin r = 0.36, 95% CI: 0.33-0.39, p = .000; normalized protein catabolic rate (nPCR) r = 0.25, 95% CI: 0.13-0.38, p = .000). In addition, mCI in deceased HD patients was significantly lower than that in HD survivors (SMD = -0.94, 95% CI: -1.46 to -0.42, p = .000). A low mCI was associated with an increased risk of all-cause death in HD patients (HR = 1.95, 95% CI: 1.57-2.42, p = .000). In addition, a low mCI was significantly associated with decreased overall survival (OS) in HD patients (HR = 3.01, 95% CI: 2.44-3.70, p = .000). mCI showed moderate diagnostic accuracy for sarcopenia in both male and female HD patients (male AUC = 0.7891; female AUC = 0.759). CONCLUSIONS: The mCI can be used as a prognostic marker for HD patients, and monitoring mCI may help to optimize the management of HD and improve overall prognosis in patients.


Subject(s)
Creatinine , Kidney Failure, Chronic , Renal Dialysis , Humans , Prognosis , Creatinine/blood , Kidney Failure, Chronic/therapy , Kidney Failure, Chronic/mortality , Kidney Failure, Chronic/complications , Nutritional Status , Biomarkers/blood
15.
Alzheimers Dement ; 20(8): 5492-5510, 2024 08.
Article in English | MEDLINE | ID: mdl-38973166

ABSTRACT

INTRODUCTION: More robust non-human primate models of Alzheimer's disease (AD) will provide new opportunities to better understand the pathogenesis and progression of AD. METHODS: We designed a CRISPR/Cas9 system to achieve precise genomic deletion of exon 9 in cynomolgus monkeys using two guide RNAs targeting the 3' and 5' intron sequences of PSEN1 exon 9. We performed biochemical, transcriptome, proteome, and biomarker analyses to characterize the cellular and molecular dysregulations of this non-human primate model. RESULTS: We observed early changes of AD-related pathological proteins (cerebrospinal fluid Aß42 and phosphorylated tau) in PSEN1 mutant (ie, PSEN1-ΔE9) monkeys. Blood transcriptome and proteome profiling revealed early changes in inflammatory and immune molecules in juvenile PSEN1-ΔE9 cynomolgus monkeys. DISCUSSION: PSEN1 mutant cynomolgus monkeys recapitulate AD-related pathological protein changes, and reveal early alterations in blood immune signaling. Thus, this model might mimic AD-associated pathogenesis and has potential utility for developing early diagnostic and therapeutic interventions. HIGHLIGHTS: A dual-guide CRISPR/Cas9 system successfully mimics AD PSEN1-ΔE9 mutation by genomic excision of exon 9. PSEN1 mutant cynomolgus monkey-derived fibroblasts exhibit disrupted PSEN1 endoproteolysis and increased Aß secretion. Blood transcriptome and proteome profiling implicate early inflammatory and immune molecular dysregulation in juvenile PSEN1 mutant cynomolgus monkeys. Cerebrospinal fluid from juvenile PSEN1 mutant monkeys recapitulates early changes of AD-related pathological proteins (increased Aß42 and phosphorylated tau).


Subject(s)
Alzheimer Disease , Disease Models, Animal , Macaca fascicularis , Mutation , Presenilin-1 , Animals , Alzheimer Disease/genetics , Alzheimer Disease/blood , Presenilin-1/genetics , Mutation/genetics , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/genetics , CRISPR-Cas Systems , Exons/genetics , Male , Transcriptome , Biomarkers/blood , Biomarkers/cerebrospinal fluid
16.
J Oral Rehabil ; 51(5): 805-816, 2024 May.
Article in English | MEDLINE | ID: mdl-38146807

ABSTRACT

BACKGROUND: Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). ATP-binding cassette protein G1 (ABCG1) is crucial in mediating the outflow of cholesterol, phosphatidylcholine and sphingomyelin and reducing intracellular lipid accumulation. OBJECTIVE: This study aimed to evaluate whether ABCG1 participates in the abnormal adipogenesis of chondrocytes in osteoarthritic cartilage of temporomandibular joint. METHODS: Eight-week-old female rats were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical (IHC) staining, and qRT-PCR were performed. Primary condylar chondrocytes of rats were transfected with ABCG1 shRNA or overexpression lentivirus and then stimulated with fluid flow shear stress (FFSS). Cells were collected for oil red O staining, immunofluorescence staining, and qRT-PCR analysis. RESULTS: Abnormal adipogenesis, characterized by increased expression of Adiponectin, CCAAT/enhancer-binding protein α (Cebpα), fatty acid binding protein 4 (Fabp4) and Perilipin1, was enhanced in the degenerative cartilage of TMJ OA in rats with UAC, accompanied by decreased expression of ABCG1. After FFSS stimulation, we observed lipid droplets in the cytoplasm of cultured cells with increased expression of Adiponectin, Cebpα, Fabp4 and Perilipin1 and decreased expression of ABCG1. Knockdown of Abcg1 induced abnormal adipogenesis and differentiation of condylar chondrocytes. Overexpression of ABCG1 alleviated the abnormal adipogenesis and differentiation of condylar chondrocytes induced by FFSS. CONCLUSIONS: Abnormal adipogenesis of chondrocytes and decreased ABCG1 expression were observed in degenerative cartilage of TMJ OA. ABCG1 overexpression effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration.


Subject(s)
Cartilage, Articular , Malocclusion , Osteoarthritis , Animals , Female , Rats , Adenosine Triphosphate/metabolism , Adipogenesis , Adiponectin/metabolism , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Malocclusion/metabolism , Temporomandibular Joint/metabolism
17.
Int J Mol Sci ; 25(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38891991

ABSTRACT

The testes serve as the primary source of androgens and the site of spermatogenesis, with their development and function governed by hormonal actions via endocrine and paracrine pathways. Male fertility hinges on the availability of testosterone, a cornerstone of spermatogenesis, while follicle-stimulating hormone (FSH) signaling is indispensable for the proliferation, differentiation, and proper functioning of Sertoli and germ cells. This review covers the research on how androgens, FSH, and other hormones support processes crucial for male fertility in the testis and reproductive tract. These hormones are regulated by the hypothalamic-pituitary-gonad (HPG) axis, which is either quiescent or activated at different stages of the life course, and the regulation of the axis is crucial for the development and normal function of the male reproductive system. Hormonal imbalances, whether due to genetic predispositions or environmental influences, leading to hypogonadism or hypergonadism, can precipitate reproductive disorders. Investigating the regulatory network and molecular mechanisms involved in testicular development and spermatogenesis is instrumental in developing new therapeutic methods, drugs, and male hormonal contraceptives.


Subject(s)
Spermatogenesis , Testis , Humans , Male , Testis/metabolism , Testis/growth & development , Animals , Follicle Stimulating Hormone/metabolism , Hypothalamo-Hypophyseal System/metabolism , Androgens/metabolism , Testosterone/metabolism
18.
Molecules ; 29(15)2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39125004

ABSTRACT

The absolute stereochemical configurations of acremolides A and B were predicted by a biochemistry-based rule and unambiguously confirmed through their total syntheses. The features of the total syntheses include sequential Krische's Ir-catalyzed crotylation, Brown's borane-mediated crotylation, Mitsunobu esterification reaction, and cross-metathesis reaction. The efficient total synthesis enabled clear validation of the predicted stereochemistry for acremolides A and B.

19.
Angew Chem Int Ed Engl ; 63(9): e202317636, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38242844

ABSTRACT

The first total synthesis of incarnatapeptins A and B, two novel marine natural products, was accomplished from readily available (S)-1-benzyloxycarbonylhexahydropyridazine-3-carboxylic acid. This route, whose longest linear sequence was 12 steps, provided the incarnatapeptins A and B in yields of 26.5 % and 19.7 %, respectively, and enabled the structure and stereochemistry of both natural products to be unambiguously confirmed. Highlights of our synthesis include the photoredox-mediated decarboxylative 1,4-addition reaction and a novel and practical N-acylation paradigm promoted by silver carbonate. The unusual facile atropisomerism of some linear peptidic intermediates was also observed by TLC analysis in the course of this work.

20.
J Neurosci ; 42(15): 3066-3079, 2022 04 13.
Article in English | MEDLINE | ID: mdl-35197319

ABSTRACT

The NMDA subtype glutamate receptors (NMDARs) play important roles in both physiological and pathologic processes in the brain. Compared with their critical roles in synaptic modifications and excitotoxicity in excitatory neurons, much less is understood about the functional contributions of NMDARs to the inhibitory GABAergic neurons. By using selective NMDAR inhibitors and potentiators, we here show that NMDARs bidirectionally modulate the intrinsic excitability (defined as spontaneous/evoked spiking activity and EPSP-spike coupling) in inhibitory GABAergic neurons in adult male and female mice. This modulation depends on GluN2C/2D- but not GluN2A/2B-containing NMDARs. We further show that NMDAR modulator EU1794-4 mostly enhances extrasynaptic NMDAR activity, and by using it we demonstrate a significant contribution of extrasynaptic NMDARs to the modulation of intrinsic excitability in inhibitory neurons. Together, this bidirectional modulation of intrinsic excitability reveals a previously less appreciated importance of NMDARs in the second-to-second functioning of inhibitory GABAergic neurons.SIGNIFICANCE STATEMENT NMDA subtype of glutamate receptors (NMDARs) have important roles in brain functions, including both physiological and pathologic ones. The role of NMDARs in inhibitory neurons has been less elucidated compared with that in excitatory neurons. Our results demonstrate the importance of GluN2C/GluN2D-containing but not GluN2A/GluN2B-containing extrasynaptic NMDARs in modulating the intrinsic excitability of inhibitory neurons. These results further suggest distinct contributions of subsynaptic locations and subunit compositions of NMDARs to their functions in excitatory and inhibitory neurons. The above findings have implications for better understanding of brain diseases, such as schizophrenia.


Subject(s)
N-Methylaspartate , Receptors, N-Methyl-D-Aspartate , Animals , Female , GABAergic Neurons , Glutamic Acid , Male , Mice , Synapses/physiology
SELECTION OF CITATIONS
SEARCH DETAIL