Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nanotechnology ; 32(20): 205502, 2021 May 14.
Article in English | MEDLINE | ID: mdl-33524964

ABSTRACT

A novel co-spray method was proposed to fabricate a reduced graphene oxide (rGO)-poly (3-hexylthiophene) (P3HT) hybrid sensing device utilizing immiscible solution for ammonia detection at room temperature. The spectrum and Scanning Electron Microscopy (SEM) results revealed uniformly crimped morphology and favorable π-π interaction for the hybrid film. The hybrid film-based sensor showed obviously enhanced ammonia sensing performance, such as increased response, reduced response time, and reinforced sensitivity, in comparison to bare rGO, P3HT, and traditional rGO/P3HT layered film-based sensors, which could be attributed to an adsorption energy barrier and the p-n heterojunction effect. The synergetic strengthened sensing mechanism is discussed. Meanwhile, recovery ratio was introduced to evaluate the abnormal baseline drift induced high-response behavior. The excellent sensing properties of the hybrid sensor indicate that the co-spray method could be an alternative process for the preparation of hetero-affinity hybrid films or functional devices.

2.
Nanotechnology ; 32(24)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33657546

ABSTRACT

Systematic analysis of the surface morphology, crystalline phase, chemical composition and elemental distribution along depth for nitrogen-doped niobium was carried out using different methods of characterization, including Scanning Electron Microscopy (SEM), Atomic-Force Microscopy (AFM), Grazing Incidence X-ray Diffraction (GIXRD), Rutherford Backscattering Spectrometry (RBS) and layer-by-layer X-ray Photoelectron Spectroscopy (XPS) analysis. The results showed that, after nitrogen doping, the surface was covered by densely distributed trigonal precipitates with an average crystallite size of 32 ± 8 nm, in line with the calculation result (29.9 nm) of nitrogen-enrichedß-Nb2N from GIXRD, demonstrating the phase composition of trigonal precipitates. The depth analysis through RBS and XPS indicated thatß-Nb2N was dominant in the topmost 9.7 nm and extended to a depth of 575 nm, with gradually decreased content. In addition, the successive change along depth in the naturally oxidized states of niobium after nitrogen doping, was revealed. It was interesting to find that the oxygen diffusion depth could be moderately enhanced by the nitridation process. These results established the near-surface phase composition of nitrided niobium, which is of great significance in evaluating the effect of nitrogen doping and further understanding the Q improvement of the superconducting radio frequency cavities.

3.
Nanotechnology ; 27(6): 065502, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26762711

ABSTRACT

In this work, in order to enhance the recovery performance of organic thin film transistors (OTFTs) ammonia (NH3) sensors, poly (3-hexylthiophene) (P3HT) and molybdenum disulfide (MoS2) were combined as sensitive materials. Different sensitive film structures as active layers of OTFTs, i.e., P3HT-MoS2 composite film, P3HT/MoS2 bilayer film and MoS2/P3HT bilayer film were fabricated by spray technology. OTFT gas sensors based on P3HT-MoS2 composite film showed a shorter recovery time than others when the ammonia concentration changed from 4 to 20 ppm. Specifically, x-ray diffraction (XRD), Raman and UV-visible absorption were employed to explore the interface properties between P3HT and single-layer MoS2. Through the complementary characterization, a mechanism based on charge transfer is proposed to explain the physical originality of these OTFT gas sensors: closer interlayer d-spacing and better π-π stacking of the P3HT chains in composite film have ensured a short recovery time of OTFT gas sensors. Moreover, sensing mechanisms of OTFTs were further studied by comparing the device performance in the presence of nitrogen or dry air as a carrier gas. This work not only strengthens the fundamental understanding of the sensing mechanism, but provides a promising approach to optimizing the OTFT gas sensors.

4.
ACS Appl Mater Interfaces ; 16(4): 4854-4862, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38252590

ABSTRACT

In halide perovskite solar cells (PSCs), moderate lead iodide (PbI2) can enhance device efficiency by providing some passivation effects, but extremely active PbI2 leads to the current density-voltage hysteresis effect and device instability. In addition, defects distributed on the buried interface of tin oxide (SnO2)/perovskite will lead to the photogenerated carrier recombination. Here, rubidium chloride (RbCl) is introduced at the buried SnO2/perovskite interface, which not only acts as an interfacial passivator to interact with the uncoordinated tin ions (Sn4+) and fill the oxygen vacancy on the SnO2 surface but also converts PbI2 into an inactive (PbI2)2RbCl compound to stabilize the perovskite phase via a bottom-up evolution effect. These synergistic effects deliver a champion PCE of 22.13% with suppressed hysteresis for the W RbCl PSCs, in combination with enhanced environmental and thermal stability. This work demonstrates that the interfacial defect passivation and bottom-up excess PbI2 management using RbCl modifiers are promising strategies to address the outstanding challenges associated with PSCs.

5.
Small Methods ; 6(2): e2101051, 2022 02.
Article in English | MEDLINE | ID: mdl-35174985

ABSTRACT

Electrode microfabrication technologies such as lithography and deposition have been widely applied in wearable electronics to boost interfacial coupling efficiency and device performance. However, a majority of these approaches are restricted by expensive and complicated processing techniques, as well as waste discharge. Here, helium plasma irradiation is employed to yield a molybdenum microstructured electrode, which is constructed into a flexible piezoresistive pressure sensor based on a Ti3 C2 Tx nanosheet-immersed polyurethane sponge. This electrode engineering strategy enables the smooth transition between sponge deformation and MXene interlamellar displacement, giving rise to high sensitivity (1.52 kPa-1 ) and good linearity (r2  = 0.9985) in a wide sensing range (0-100 kPa) with a response time of 226 ms for pressure detection. In addition, both the experimental characterization and finite element simulation confirm that the hierarchical structures modulated by pore size, plasma bias, and MXene concentration play a crucial role in improving the sensing performance. Furthermore, the as-developed flexible pressure sensor is demonstrated to measure human radial pulse, detect finger tapping, foot stomping, and perform object identification, revealing great feasibility in wearable biomonitoring and health assessment.


Subject(s)
Equipment Design/methods , Heart Rate Determination/instrumentation , Wearable Electronic Devices , Finite Element Analysis , Humans , Microtechnology , Polyurethanes/chemistry , Titanium/chemistry , Touch
6.
Nanoscale Res Lett ; 11(1): 130, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26956599

ABSTRACT

ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

7.
Nanoscale ; 8(47): 19654-19661, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27858043

ABSTRACT

While most work carried out to date has focused on the solvent annealing of perovskite, in the present work, we focused on the solvent annealing of lead iodide. Based on the two-step spin-coating method, we designed a screening method to search for an effective solvent annealing process for PbI2. PbI2 films were annealed in diverse solvent atmospheres, including DMF, DMSO, acetone, and isopropanol (IPA). We found that the solvent annealing of PbI2 in the DMF, acetone, and IPA atmospheres resulted in dense PbI2 films, which impeded the complete conversion of PbI2 to CH3NH3PbI3. Surprisingly, employing the DMSO solvent annealing process for PbI2 led to porous PbI2, which facilitated the complete conversion of PbI2 to perovskite with larger grain sizes. Solar cells fabricated using the DMSO solvent annealing process exhibited the best efficiency of 18.5%, with a fill factor of 76.5%. This unique solvent annealing method presents a new way of controlling the perovskite film quality for highly efficient solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL