Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Chembiochem ; 25(13): e202400321, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38720428

ABSTRACT

Cyclic dinucleotides (CDNs) have garnered popularity over the last decade as immunotherapeutic agents, which activate the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway to trigger an immune response. Many analogs of 2'3'-cGAMP, c-di-GMP, and c-di-AMP have been developed and shown as effective cancer vaccines and immunomodulators for the induction of both the adaptive and innate immune systems. Unfortunately, the effectiveness of these CDNs is limited by their chemical and enzymatic instability. We recently introduced 5'-endo-phosphorothoiate 2'3'-cGAMP analogs as potent STING agonist with improved resistance to cleavage by clinically relevant phosphodiesterases. We herein report the synthesis of locked nucleic acid-functionalized (LNA) endo-S-CDNs and evaluate their ability to activate STING in THP1 monocytes. Interestingly, some of our synthesized LNA 3'3'-endo-S-CDNs can moderately activate hSTING REF haplotype (R232H), which exhibit diminished response to both 2'3'-cGAMP and ADU-S100. Also, we show that one of our most potent endo-S-CDNs has remarkable chemical (oxidants I2 and H2O2) and phosphodiesterase stability.


Subject(s)
Membrane Proteins , Oligonucleotides , Membrane Proteins/metabolism , Membrane Proteins/agonists , Humans , Oligonucleotides/chemistry , Oligonucleotides/pharmacology , Oligonucleotides/chemical synthesis , Nucleotides, Cyclic/pharmacology , Nucleotides, Cyclic/chemistry , Nucleotides, Cyclic/metabolism , THP-1 Cells
2.
RSC Med Chem ; 15(5): 1508-1514, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38784462

ABSTRACT

The stimulator of interferon genes (STING) has emerged as a promising target for cancer immunotherapy. 2'3'-cGAMP, a natural agonist of STING, shows anticancer activity via stimulation of immune cells but it is susceptible to degradation in vivo by hydrolytic enzymes. Consequently, the cyclic dinucleotide analogues that are being evaluated in the clinic as immunotherapies contain the hydrolytically stable phosphorothioate moiety, whereby the sulfur moiety is exo to the phosphate containing ring. The synthesis of these phosphorothioates however produces diastereomers, which presents separation challenges. An alternative phosphorothioate (referred to as endo-S-phosphorothioate) whereby the sulfur atom is endo to the cyclic phosphate ring (i.e. 5'-S-phosphorothioester linkage) would not have chirality at phosphorus and hence not pose diastereomer separation problems. Herein, we report the design and synthesis of novel 5'-endo-phosphorothioate substituted 2'3'cGAMP analogues that are hydrolytically stable towards both ectonucleotide phosphodiesterase I (ENPP1, a mammalian phosphodiesterase) and poxvirus immune nucleases (poxin, a phosphodiesterase in Poxvirus) but retains STING-TBK1-IRF activation, comparable to clinical candidate, ADU-S100 in THP1 monocytes.

SELECTION OF CITATIONS
SEARCH DETAIL