Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cell ; 182(1): 226-244.e17, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649875

ABSTRACT

Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.


Subject(s)
Disease Progression , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Proteogenomics , Smoking/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinogens/toxicity , Cohort Studies , Cytosine Deaminase/metabolism , Asia, Eastern , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Genome, Human , Humans , Matrix Metalloproteinases/metabolism , Mutation/genetics , Principal Component Analysis
2.
Anal Chem ; 93(48): 15931-15940, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34780171

ABSTRACT

Alterations of protein glycosylation are closely related with pathophysiological regulation. Due to the structural macro- and microheterogeneity, low stoichiometry, and low ionization efficiency of glycopeptides, high-performance tools to enrich glycopeptides, especially the negatively charged and labile sialoglycopeptides, are essential to enhance the identification of the underexplored glycoproteome. Here, we present the first implementation of zwitterionic hydrophilic interaction chromatography with the exposed choline group (ZIC-cHILIC) in StageTip for simultaneous enrichment and fractionation of intact glycopeptides. In a model study using lung cancer cells, early elution by a high percentage of acetonitrile prominently prefilters nonglycopeptides, facilitating high enrichment specificity for glycopeptides (92-96%) and sialoglycopeptides (77-89%) in the subsequent hydrophilic fractions. The stepwise elution shows a high glycopeptide fractionation efficiency by a <10% overlap of glycopeptides between adjacent fractions. Most importantly, the ZIC-cHILIC stepwise strategy demonstrated good reproducibility (>80% in triplicate analysis) as well as superior coverage of 4.6- to 12.0-fold and 2.1- to 35.6-fold more glycopeptides and sialoglycopeptides compared to conventional TiO2 and ZIC-HILIC, respectively. To the best of our knowledge, the result with 2742 sialoglycopeptides among 7367 unique glycopeptides and 166 glycans from 2434 N-glycosites of 1118 glycoproteins (Byonic score > 100) provides one of the deepest glycoproteomic profiles in single-cell type. Without the immunoprecipitation step, the large-scale glycoproteomic atlas also reveals site-specific glycosylation of many druggable receptor proteins, such as EGFR, MET, ERBB2, ERBB3, AXL, and IGF1R. The demonstrated high enrichment specificity and identification depth show that stepwise ZIC-cHILIC is an efficient method to explore the under-represented sialoglycoproteome.


Subject(s)
Glycopeptides , Proteome , Glycoproteins , Glycosylation , Hydrophobic and Hydrophilic Interactions , Reproducibility of Results
3.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 2100-1, 2016 05.
Article in English | MEDLINE | ID: mdl-25418625

ABSTRACT

In this study, the complete mitogenome sequence of the cryptic "lineage B" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by next-generation sequencing method. The assembled mitogenome consisting of 16,694 bp, includes 13 protein coding genes, 25 transfer RNAs, 2 ribosomal RNAs genes. The overall base composition of "lineage B" S. lessoniana is 36.7% for A, 18.9 % for C, 34.5 % for T and 9.8 % for G and show 90% identities to "lineage C" S. lessoniana. It is also exhibits high T + A content (71.2%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage B" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.


Subject(s)
Decapodiformes/genetics , Genome, Mitochondrial , Phylogeny , Animals , Base Composition/genetics , Genes, Mitochondrial , RNA, Transfer/genetics
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(3): 1758-9, 2016 05.
Article in English | MEDLINE | ID: mdl-25259447

ABSTRACT

In this study, the complete mitogenome sequence of Northwestern Pacific 2 (NWP2) cryptic species of flathead mullet, Mugil cephalus (Teleostei: Mugilidae) has been amplified by long-range PCR and sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,686 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop was 909 bp length and was located between tRNA-Pro and tRNA-Phe. The overall base composition of NWP2 M. cephalus was 28.4% for A, 29.8% for C, 26.5% for T and 15.3% for G. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.


Subject(s)
Genome, Mitochondrial/genetics , High-Throughput Nucleotide Sequencing/methods , Smegmamorpha/genetics , Animals , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Smegmamorpha/classification
SELECTION OF CITATIONS
SEARCH DETAIL