Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
PLoS Pathog ; 20(6): e1011915, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38861581

ABSTRACT

Mycobacterium tuberculosis infects two billion people across the globe, and results in 8-9 million new tuberculosis (TB) cases and 1-1.5 million deaths each year. Most patients have no known genetic basis that predisposes them to disease. Here, we investigate the complex genetic basis of pulmonary TB by modelling human genetic diversity with the Diversity Outbred mouse population. When infected with M. tuberculosis, one-third develop early onset, rapidly progressive, necrotizing granulomas and succumb within 60 days. The remaining develop non-necrotizing granulomas and survive longer than 60 days. Genetic mapping using immune and inflammatory mediators; and clinical, microbiological, and granuloma correlates of disease identified five new loci on mouse chromosomes 1, 2, 4, 16; and three known loci on chromosomes 3 and 17. Further, multiple positively correlated traits shared loci on chromosomes 1, 16, and 17 and had similar patterns of allele effects, suggesting these loci contain critical genetic regulators of inflammatory responses to M. tuberculosis. To narrow the list of candidate genes, we used a machine learning strategy that integrated gene expression signatures from lungs of M. tuberculosis-infected Diversity Outbred mice with gene interaction networks to generate scores representing functional relationships. The scores were used to rank candidates for each mapped trait, resulting in 11 candidate genes: Ncf2, Fam20b, S100a8, S100a9, Itgb5, Fstl1, Zbtb20, Ddr1, Ier3, Vegfa, and Zfp318. Although all candidates have roles in infection, inflammation, cell migration, extracellular matrix remodeling, or intracellular signaling, and all contain single nucleotide polymorphisms (SNPs), SNPs in only four genes (S100a8, Itgb5, Fstl1, Zfp318) are predicted to have deleterious effects on protein functions. We performed methodological and candidate validations to (i) assess biological relevance of predicted allele effects by showing that Diversity Outbred mice carrying PWK/PhJ alleles at the H-2 locus on chromosome 17 QTL have shorter survival; (ii) confirm accuracy of predicted allele effects by quantifying S100A8 protein in inbred founder strains; and (iii) infection of C57BL/6 mice deficient for the S100a8 gene. Overall, this body of work demonstrates that systems genetics using Diversity Outbred mice can identify new (and known) QTLs and functionally relevant gene candidates that may be major regulators of complex host-pathogens interactions contributing to granuloma necrosis and acute inflammation in pulmonary TB.


Subject(s)
Mycobacterium tuberculosis , Animals , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Mice , Quantitative Trait Loci , Tuberculosis, Pulmonary/genetics , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Disease Models, Animal , Animals, Outbred Strains , Humans , Chromosome Mapping , Systems Biology
2.
Infect Immun ; 92(7): e0026323, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38899881

ABSTRACT

Because most humans resist Mycobacterium tuberculosis infection, there is a paucity of lung samples to study. To address this gap, we infected Diversity Outbred mice with M. tuberculosis and studied the lungs of mice in different disease states. After a low-dose aerosol infection, progressors succumbed to acute, inflammatory lung disease within 60 days, while controllers maintained asymptomatic infection for at least 60 days, and then developed chronic pulmonary tuberculosis (TB) lasting months to more than 1 year. Here, we identified features of asymptomatic M. tuberculosis infection by applying computational and statistical approaches to multimodal data sets. Cytokines and anti-M. tuberculosis cell wall antibodies discriminated progressors vs controllers with chronic pulmonary TB but could not classify mice with asymptomatic infection. However, a novel deep-learning neural network trained on lung granuloma images was able to accurately classify asymptomatically infected lungs vs acute pulmonary TB in progressors vs chronic pulmonary TB in controllers, and discrimination was based on perivascular and peribronchiolar lymphocytes. Because the discriminatory lesion was rich in lymphocytes and CD4 T cell-mediated immunity is required for resistance, we expected CD4 T-cell genes would be elevated in asymptomatic infection. However, the significantly different, highly expressed genes were from B-cell pathways (e.g., Bank1, Cd19, Cd79, Fcmr, Ms4a1, Pax5, and H2-Ob), and CD20+ B cells were enriched in the perivascular and peribronchiolar regions of mice with asymptomatic M. tuberculosis infection. Together, these results indicate that genetically controlled B-cell responses are important for establishing asymptomatic M. tuberculosis lung infection.


Subject(s)
B-Lymphocytes , Lung , Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Animals , Mice , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Mycobacterium tuberculosis/immunology , B-Lymphocytes/immunology , Lung/microbiology , Lung/pathology , Lung/immunology , Granuloma/microbiology , Granuloma/immunology , Granuloma/pathology , Lymphoid Tissue/immunology , Lymphoid Tissue/microbiology , Lymphoid Tissue/pathology , Disease Models, Animal , Female , Asymptomatic Infections , Cytokines/metabolism , Cytokines/genetics
3.
PLoS Pathog ; 17(8): e1009773, 2021 08.
Article in English | MEDLINE | ID: mdl-34403447

ABSTRACT

More humans have died of tuberculosis (TB) than any other infectious disease and millions still die each year. Experts advocate for blood-based, serum protein biomarkers to help diagnose TB, which afflicts millions of people in high-burden countries. However, the protein biomarker pipeline is small. Here, we used the Diversity Outbred (DO) mouse population to address this gap, identifying five protein biomarker candidates. One protein biomarker, serum CXCL1, met the World Health Organization's Targeted Product Profile for a triage test to diagnose active TB from latent M.tb infection (LTBI), non-TB lung disease, and normal sera in HIV-negative, adults from South Africa and Vietnam. To find the biomarker candidates, we quantified seven immune cytokines and four inflammatory proteins corresponding to highly expressed genes unique to progressor DO mice. Next, we applied statistical and machine learning methods to the data, i.e., 11 proteins in lungs from 453 infected and 29 non-infected mice. After searching all combinations of five algorithms and 239 protein subsets, validating, and testing the findings on independent data, two combinations accurately diagnosed progressor DO mice: Logistic Regression using MMP8; and Gradient Tree Boosting using a panel of 4: CXCL1, CXCL2, TNF, IL-10. Of those five protein biomarker candidates, two (MMP8 and CXCL1) were crucial for classifying DO mice; were above the limit of detection in most human serum samples; and had not been widely assessed for diagnostic performance in humans before. In patient sera, CXCL1 exceeded the triage diagnostic test criteria (>90% sensitivity; >70% specificity), while MMP8 did not. Using Area Under the Curve analyses, CXCL1 averaged 94.5% sensitivity and 88.8% specificity for active pulmonary TB (ATB) vs LTBI; 90.9% sensitivity and 71.4% specificity for ATB vs non-TB; and 100.0% sensitivity and 98.4% specificity for ATB vs normal sera. Our findings overall show that the DO mouse population can discover diagnostic-quality, serum protein biomarkers of human TB.


Subject(s)
Biomarkers/metabolism , Chemokine CXCL1/metabolism , Machine Learning , Mycobacterium tuberculosis/physiology , Transcriptome , Tuberculosis, Pulmonary/diagnosis , Animals , Animals, Outbred Strains , Cytokines/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , ROC Curve , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/microbiology
4.
PLoS Comput Biol ; 9(11): e1003319, 2013.
Article in English | MEDLINE | ID: mdl-24277996

ABSTRACT

Cleft formation during submandibular salivary gland branching morphogenesis is the critical step initiating the growth and development of the complex adult organ. Previous experimental studies indicated requirements for several epithelial cellular processes, such as proliferation, migration, cell-cell adhesion, cell-extracellular matrix (matrix) adhesion, and cellular contraction in cleft formation; however, the relative contribution of each of these processes is not fully understood since it is not possible to experimentally manipulate each factor independently. We present here a comprehensive analysis of several cellular parameters regulating cleft progression during branching morphogenesis in the epithelial tissue of an early embryonic salivary gland at a local scale using an on lattice Monte-Carlo simulation model, the Glazier-Graner-Hogeweg model. We utilized measurements from time-lapse images of mouse submandibular gland organ explants to construct a temporally and spatially relevant cell-based 2D model. Our model simulates the effect of cellular proliferation, actomyosin contractility, cell-cell and cell-matrix adhesions on cleft progression, and it was used to test specific hypotheses regarding the function of these parameters in branching morphogenesis. We use innovative features capturing several aspects of cleft morphology and quantitatively analyze clefts formed during functional modification of the cellular parameters. Our simulations predict that a low epithelial mitosis rate and moderate level of actomyosin contractility in the cleft cells promote cleft progression. Raising or lowering levels of contractility and mitosis rate resulted in non-progressive clefts. We also show that lowered cell-cell adhesion in the cleft region and increased cleft cell-matrix adhesions are required for cleft progression. Using a classifier-based analysis, the relative importance of these four contributing cellular factors for effective cleft progression was determined as follows: cleft cell contractility, cleft region cell-cell adhesion strength, epithelial cell mitosis rate, and cell-matrix adhesion strength.


Subject(s)
Models, Biological , Morphogenesis/physiology , Submandibular Gland/embryology , Algorithms , Animals , Cell Adhesion , Embryo, Mammalian , Female , Mice , Monte Carlo Method
5.
IEEE Access ; 12: 17164-17194, 2024.
Article in English | MEDLINE | ID: mdl-38515959

ABSTRACT

Tuberculosis (TB), primarily affecting the lungs, is caused by the bacterium Mycobacterium tuberculosis and poses a significant health risk. Detecting acid-fast bacilli (AFB) in stained samples is critical for TB diagnosis. Whole Slide (WS) Imaging allows for digitally examining these stained samples. However, current deep-learning approaches to analyzing large-sized whole slide images (WSIs) often employ patch-wise analysis, potentially missing the complex spatial patterns observed in the granuloma essential for accurate TB classification. To address this limitation, we propose an approach that models cell characteristics and interactions as a graph, capturing both cell-level information and the overall tissue micro-architecture. This method differs from the strategies in related cell graph-based works that rely on edge thresholds based on sparsity/density in cell graph construction, emphasizing a biologically informed threshold determination instead. We introduce a cell graph-based jumping knowledge neural network (CG-JKNN) that operates on the cell graphs where the edge thresholds are selected based on the length of the mycobacteria's cords and the activated macrophage nucleus's size to reflect the actual biological interactions observed in the tissue. The primary process involves training a Convolutional Neural Network (CNN) to segment AFBs and macrophage nuclei, followed by converting large (42831*41159 pixels) lung histology images into cell graphs where an activated macrophage nucleus/AFB represents each node within the graph and their interactions are denoted as edges. To enhance the interpretability of our model, we employ Integrated Gradients and Shapely Additive Explanations (SHAP). Our analysis incorporated a combination of 33 graph metrics and 20 cell morphology features. In terms of traditional machine learning models, Extreme Gradient Boosting (XGBoost) was the best performer, achieving an F1 score of 0.9813 and an Area under the Precision-Recall Curve (AUPRC) of 0.9848 on the test set. Among graph-based models, our CG-JKNN was the top performer, attaining an F1 score of 0.9549 and an AUPRC of 0.9846 on the held-out test set. The integration of graph-based and morphological features proved highly effective, with CG-JKNN and XGBoost showing promising results in classifying instances into AFB and activated macrophage nucleus. The features identified as significant by our models closely align with the criteria used by pathologists in practice, highlighting the clinical applicability of our approach. Future work will explore knowledge distillation techniques and graph-level classification into distinct TB progression categories.

6.
J Biomed Biotechnol ; 2012: 102036, 2012.
Article in English | MEDLINE | ID: mdl-22665978

ABSTRACT

Prognosis of breast cancer is primarily predicted by the histological grading of the tumor, where pathologists manually evaluate microscopic characteristics of the tissue. This labor intensive process suffers from intra- and inter-observer variations; thus, computer-aided systems that accomplish this assessment automatically are in high demand. We address this by developing an image analysis framework for the automated grading of breast cancer in in vitro three-dimensional breast epithelial acini through the characterization of acinar structure morphology. A set of statistically significant features for the characterization of acini morphology are exploited for the automated grading of six (MCF10 series) cell line cultures mimicking three grades of breast cancer along the metastatic cascade. In addition to capturing both expected and visually differentiable changes, we quantify subtle differences that pose a challenge to assess through microscopic inspection. Our method achieves 89.0% accuracy in grading the acinar structures as nonmalignant, noninvasive carcinoma, and invasive carcinoma grades. We further demonstrate that the proposed methodology can be successfully applied for the grading of in vivo tissue samples albeit with additional constraints. These results indicate that the proposed features can be used to describe the relationship between the acini morphology and cellular function along the metastatic cascade.


Subject(s)
Acinar Cells/cytology , Breast Neoplasms/pathology , Breast/cytology , Image Interpretation, Computer-Assisted/methods , Acinar Cells/metabolism , Acinar Cells/pathology , Animals , Breast/embryology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Integrin alpha3/analysis , Integrin alpha3/metabolism , Integrin alpha6/analysis , Integrin alpha6/metabolism , Mice , Neoplasm Metastasis , Support Vector Machine , Transplantation, Heterologous
7.
BMC Genomics ; 12 Suppl 2: S1, 2011.
Article in English | MEDLINE | ID: mdl-21988942

ABSTRACT

BACKGROUND: Strains of Mycobacterium tuberculosis complex (MTBC) can be classified into major lineages based on their genotype. Further subdivision of major lineages into sublineages requires multiple biomarkers along with methods to combine and analyze multiple sources of information in one unsupervised learning model. Typically, spacer oligonucleotide type (spoligotype) and mycobacterial interspersed repetitive units (MIRU) are used for TB genotyping and surveillance. Here, we examine the sublineage structure of MTBC strains with multiple biomarkers simultaneously, by employing a tensor clustering framework (TCF) on multiple-biomarker tensors. RESULTS: Simultaneous analysis of the spoligotype and MIRU type of strains using TCF on multiple-biomarker tensors leads to coherent sublineages of major lineages with clear and distinctive spoligotype and MIRU signatures. Comparison of tensor sublineages with SpolDB4 families either supports tensor sublineages, or suggests subdivision or merging of SpolDB4 families. High prediction accuracy of major lineage classification with supervised tensor learning on multiple-biomarker tensors validates our unsupervised analysis of sublineages on multiple-biomarker tensors. CONCLUSIONS: TCF on multiple-biomarker tensors achieves simultaneous analysis of multiple biomarkers and suggest a new putative sublineage structure for each major lineage. Analysis of multiple-biomarker tensors gives insight into the sublineage structure of MTBC at the genomic level.


Subject(s)
Biomarkers/analysis , Genome, Bacterial , Interspersed Repetitive Sequences , Models, Statistical , Mycobacterium tuberculosis/classification , Algorithms , Cluster Analysis , DNA Fingerprinting/methods , Genetic Loci , Minisatellite Repeats , Mycobacterium tuberculosis/genetics , Phylogeny , Polymorphism, Genetic , Sequence Deletion
8.
BMC Med Imaging ; 11: 11, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21599975

ABSTRACT

BACKGROUND: Computational analysis of tissue structure reveals sub-visual differences in tissue functional states by extracting quantitative signature features that establish a diagnostic profile. Incomplete and/or inaccurate profiles contribute to misdiagnosis. METHODS: In order to create more complete tissue structure profiles, we adapted our cell-graph method for extracting quantitative features from histopathology images to now capture temporospatial traits of three-dimensional collagen hydrogel cell cultures. Cell-graphs were proposed to characterize the spatial organization between the cells in tissues by exploiting graph theory wherein the nuclei of the cells constitute the nodes and the approximate adjacency of cells are represented with edges. We chose 11 different cell types representing non-tumorigenic, pre-cancerous, and malignant states from multiple tissue origins. RESULTS: We built cell-graphs from the cellular hydrogel images and computed a large set of features describing the structural characteristics captured by the graphs over time. Using three-mode tensor analysis, we identified the five most significant features (metrics) that capture the compactness, clustering, and spatial uniformity of the 3D architectural changes for each cell type throughout the time course. Importantly, four of these metrics are also the discriminative features for our histopathology data from our previous studies. CONCLUSIONS: Together, these descriptive metrics provide rigorous quantitative representations of image information that other image analysis methods do not. Examining the changes in these five metrics allowed us to easily discriminate between all 11 cell types, whereas differences from visual examination of the images are not as apparent. These results demonstrate that application of the cell-graph technique to 3D image data yields discriminative metrics that have the potential to improve the accuracy of image-based tissue profiles, and thus improve the detection and diagnosis of disease.


Subject(s)
Algorithms , Extracellular Matrix/pathology , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Neoplasms, Experimental/pathology , Pattern Recognition, Automated/methods , Humans , Image Enhancement/methods , Neoplasms, Experimental/classification , Reproducibility of Results , Sensitivity and Specificity
9.
Front Neurol ; 12: 705119, 2021.
Article in English | MEDLINE | ID: mdl-34867707

ABSTRACT

In people with drug resistant epilepsy (DRE), seizures are unpredictable, often occurring with little or no warning. The unpredictability causes anxiety and much of the morbidity and mortality of seizures. In this work, 102 seizures of mesial temporal lobe onset were analyzed from 19 patients with DRE who had simultaneous intracranial EEG (iEEG) and scalp EEG as part of their surgical evaluation. The first aim of this paper was to develop machine learning models for seizure prediction and detection (i) using iEEG only, (ii) scalp EEG only and (iii) jointly analyzing both iEEG and scalp EEG. The second goal was to test if machine learning could detect a seizure on scalp EEG when that seizure was not detectable by the human eye (surface negative) but was seen in iEEG. The final question was to determine if the deep learning algorithm could correctly lateralize the seizure onset. The seizure detection and prediction problems were addressed jointly by training Deep Neural Networks (DNN) on 4 classes: non-seizure, pre-seizure, left mesial temporal onset seizure and right mesial temporal onset seizure. To address these aims, the classification accuracy was tested using two deep neural networks (DNN) against 3 different types of similarity graphs which used different time series of EEG data. The convolutional neural network (CNN) with the Waxman similarity graph yielded the highest accuracy across all EEG data (iEEG, scalp EEG and combined). Specifically, 1 second epochs of EEG were correctly assigned to their seizure, pre-seizure, or non-seizure category over 98% of the time. Importantly, the pre-seizure state was classified correctly in the vast majority of epochs (>97%). Detection from scalp EEG data alone of surface negative seizures and the seizures with the delayed scalp onset (the surface negative portion) was over 97%. In addition, the model accurately lateralized all of the seizures from scalp data, including the surface negative seizures. This work suggests that highly accurate seizure prediction and detection is feasible using either intracranial or scalp EEG data. Furthermore, surface negative seizures can be accurately predicted, detected and lateralized with machine learning even when they are not visible to the human eye.

10.
Bioinformatics ; 23(13): i10-8, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17646285

ABSTRACT

MOTIVATION: The success or failure of an epilepsy surgery depends greatly on the localization of epileptic focus (origin of a seizure). We address the problem of identification of a seizure origin through an analysis of ictal electroencephalogram (EEG), which is proven to be an effective standard in epileptic focus localization. SUMMARY: With a goal of developing an automated and robust way of visual analysis of large amounts of EEG data, we propose a novel approach based on multiway models to study epilepsy seizure structure. Our contributions are 3-fold. First, we construct an Epilepsy Tensor with three modes, i.e. time samples, scales and electrodes, through wavelet analysis of multi-channel ictal EEG. Second, we demonstrate that multiway analysis techniques, in particular parallel factor analysis (PARAFAC), provide promising results in modeling the complex structure of an epilepsy seizure, localizing a seizure origin and extracting artifacts. Third, we introduce an approach for removing artifacts using multilinear subspace analysis and discuss its merits and drawbacks. RESULTS: Ictal EEG analysis of 10 seizures from 7 patients are included in this study. Our results for 8 seizures match with clinical observations in terms of seizure origin and extracted artifacts. On the other hand, for 2 of the seizures, seizure localization is not achieved using an initial trial of PARAFAC modeling. In these cases, first, we apply an artifact removal method and subsequently apply the PARAFAC model on the epilepsy tensor from which potential artifacts have been removed. This method successfully identifies the seizure origin in both cases.


Subject(s)
Artificial Intelligence , Brain Mapping/methods , Diagnosis, Computer-Assisted/methods , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Multivariate Analysis , Reproducibility of Results , Sensitivity and Specificity
11.
IEEE Trans Biomed Eng ; 65(9): 2109-2118, 2018 09.
Article in English | MEDLINE | ID: mdl-29989952

ABSTRACT

OBJECTIVE: This paper investigates the hypothesis that focal seizures can be predicted using scalp electroencephalogram (EEG) data. Our first aim is to learn features that distinguish between the interictal and preictal regions. The second aim is to define a prediction horizon in which the prediction is as accurate and as early as possible, clearly two competing objectives. METHODS: Convolutional filters on the wavelet transformation of the EEG signal are used to define and learn quantitative signatures for each period: interictal, preictal, and ictal. The optimal seizure prediction horizon is also learned from the data as opposed to making an a priori assumption. RESULTS: Computational solutions to the optimization problem indicate a 10-min seizure prediction horizon. This result is verified by measuring Kullback-Leibler divergence on the distributions of the automatically extracted features. CONCLUSION: The results on the EEG database of 204 recordings demonstrate that (i) the preictal phase transition occurs approximately ten minutes before seizure onset, and (ii) the prediction results on the test set are promising, with a sensitivity of 87.8% and a low false prediction rate of 0.142 FP/h. Our results significantly outperform a random predictor and other seizure prediction algorithms. SIGNIFICANCE: We demonstrate that a robust set of features can be learned from scalp EEG that characterize the preictal state of focal seizures.


Subject(s)
Electroencephalography/methods , Neural Networks, Computer , Seizures/diagnosis , Wavelet Analysis , Algorithms , Databases, Factual , Humans , Scalp/physiology
12.
BMC Genomics ; 8: 380, 2007 Oct 19.
Article in English | MEDLINE | ID: mdl-17949499

ABSTRACT

BACKGROUND: Recently, we demonstrated that human mesenchymal stem cells (hMSC) stimulated with dexamethazone undergo gene focusing during osteogenic differentiation (Stem Cells Dev 14(6): 1608-20, 2005). Here, we examine the protein expression profiles of three additional populations of hMSC stimulated to undergo osteogenic differentiation via either contact with pro-osteogenic extracellular matrix (ECM) proteins (collagen I, vitronectin, or laminin-5) or osteogenic media supplements (OS media). Specifically, we annotate these four protein expression profiles, as well as profiles from naïve hMSC and differentiated human osteoblasts (hOST), with known gene ontologies and analyze them as a tensor with modes for the expressed proteins, gene ontologies, and stimulants. RESULTS: Direct component analysis in the gene ontology space identifies three components that account for 90% of the variance between hMSC, osteoblasts, and the four stimulated hMSC populations. The directed component maps the differentiation stages of the stimulated stem cell populations along the differentiation axis created by the difference in the expression profiles of hMSC and hOST. Surprisingly, hMSC treated with ECM proteins lie closer to osteoblasts than do hMSC treated with OS media. Additionally, the second component demonstrates that proteomic profiles of collagen I- and vitronectin-stimulated hMSC are distinct from those of OS-stimulated cells. A three-mode tensor analysis reveals additional focus proteins critical for characterizing the phenotypic variations between naïve hMSC, partially differentiated hMSC, and hOST. CONCLUSION: The differences between the proteomic profiles of OS-stimulated hMSC and ECM-hMSC characterize different transitional phenotypes en route to becoming osteoblasts. This conclusion is arrived at via a three-mode tensor analysis validated using hMSC plated on laminin-5.


Subject(s)
Bone Development , Mesenchymal Stem Cells/metabolism , Osteoblasts/metabolism , Proteomics , Cell Differentiation , Humans , Mesenchymal Stem Cells/cytology , Osteoblasts/cytology
13.
Bioinformatics ; 21 Suppl 2: ii7-12, 2005 Sep 01.
Article in English | MEDLINE | ID: mdl-16204128

ABSTRACT

This work reports a novel computational method based on augmented cell-graphs (ACG), which are constructed from low-magnification tissue images for the mathematical diagnosis of brain cancer (malignant glioma). An ACG is a simple, undirected, weighted and complete graph in which a node represents a cell cluster and an edge between a pair of nodes defines a binary relationship between them. Both the nodes and the edges of an ACG are assigned weights to capture more information about the topology of the tissue. In this work, the experiments are conducted on a dataset that is comprised of 646 human brain biopsy samples from 60 different patients. It is shown that the ACG approach yields sensitivity of 97.53% and specificities of 93.33 and 98.15% (for the inflamed and healthy, respectively) at the tissue level in glioma diagnosis.


Subject(s)
Algorithms , Artificial Intelligence , Brain Neoplasms/pathology , Glioma/pathology , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Humans , Reproducibility of Results , Sensitivity and Specificity
14.
Article in English | MEDLINE | ID: mdl-27070978

ABSTRACT

This study considers the problem of describing and predicting cleft formation during the early stages of branching morphogenesis in mouse submandibular salivary glands (SMG) under the influence of varied concentrations of epidermal growth factors (EGF). Given a time-lapse video of a growing SMG, first we build a descriptive model that captures the underlying biological process and quantifies the ground truth. Tissue-scale (global) and morphological features related to regions of interest (local features) are used to characterize the biological ground truth. Second, we devise a predictive growth model that simulates EGF-modulated branching morphogenesis using a dynamic graph algorithm, which is driven by biological parameters such as EGF concentration, mitosis rate, and cleft progression rate. Given the initial configuration of the SMG, the evolution of the dynamic graph predicts the cleft formation, while maintaining the local structural characteristics of the SMG. We determined that higher EGF concentrations cause the formation of higher number of buds and comparatively shallow cleft depths. Third, we compared the prediction accuracy of our model to the Glazier-Graner-Hogeweg (GGH) model, an on-lattice Monte-Carlo simulation model, under a specific energy function parameter set that allows new rounds of de novo cleft formation. The results demonstrate that the dynamic graph model yields comparable simulations of gland growth to that of the GGH model with a significantly lower computational complexity. Fourth, we enhanced this model to predict the SMG morphology for an EGF concentration without the assistance of a ground truth time-lapse biological video data; this is a substantial benefit of our model over other similar models that are guided and terminated by information regarding the final SMG morphology. Hence, our model is suitable for testing the impact of different biological parameters involved with the process of branching morphogenesis in silico, while reducing the requirement of in vivo experiments.


Subject(s)
Models, Biological , Models, Statistical , Morphogenesis/physiology , Systems Biology/methods , Unsupervised Machine Learning , Animals , Female , Mice , Monte Carlo Method , Salivary Glands/growth & development
15.
Bioinformatics ; 20 Suppl 1: i145-51, 2004 Aug 04.
Article in English | MEDLINE | ID: mdl-15262793

ABSTRACT

We report a novel, proof-of-concept, computational method that models a type of brain cancer (glioma) only by using the topological properties of its cells in the tissue image. From low-magnification (80x) tissue images of 384 x 384 pixels, we construct the graphs of the cells based on the locations of the cells within the images. We generate such cell graphs of 1000-3000 cells (nodes) with 2000-10,000 links, each of which is calculated as a decaying exponential function of the Euclidean distance between every pair of cells in accordance with the Waxman model. At the cellular level, we compute the graph metrics of the cell graphs, including the degree, clustering coefficient, eccentricity and closeness for each cell. Working with a total of 285 tissue samples surgically removed from 12 different patients, we demonstrate that the self-organizing clusters of cancerous cells exhibit distinctive graph metrics that distinguish them from the healthy cells and the unhealthy inflamed cells at the cellular level with an accuracy of at least 85%. At the tissue level, we accomplish correct tissue classifications of cancerous, healthy and non-neoplastic inflamed tissue samples with an accuracy of 100% by requiring correct classification for the majority of the cells within the tissue sample.


Subject(s)
Algorithms , Artificial Intelligence , Brain Neoplasms/classification , Brain Neoplasms/pathology , Glioma/classification , Glioma/pathology , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Humans , Reproducibility of Results , Sensitivity and Specificity
16.
Article in English | MEDLINE | ID: mdl-17044189

ABSTRACT

This work presents a graph-based representation (a.k.a., cell-graph) of histopathological images for automated cancer diagnosis by probabilistically assigning a link between a pair of cells (or cell clusters). Since the node set of a cell-graph can include a cluster of cells as well as individual ones, it enables working with low-cost, low-magnification photomicrographs. The contributions of this work are twofold. First, it is shown that without establishing a pairwise spatial relation between the cells (i.e., the edges of a cell-graph), neither the spatial distribution of the cells nor the texture analysis of the images yields accurate results for tissue level diagnosis of brain cancer called malignant glioma. Second, this work defines a set of global metrics by processing the entire cell-graph to capture tissue level information coded into the histopathological images. In this work, the results are obtained on the photomicrographs of 646 archival brain biopsy samples of 60 different patients. It is shown that the global metrics of cell-graphs distinguish cancerous tissues from noncancerous ones with high accuracy (at least 99 percent accuracy for healthy tissues with lower cellular density level, and at least 92 percent accuracy for benign tissues with similar high cellular density level such as nonneoplastic reactive/inflammatory conditions).


Subject(s)
Algorithms , Artificial Intelligence , Brain Neoplasms/pathology , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Cluster Analysis , Humans , Information Storage and Retrieval/methods , Reproducibility of Results , Sensitivity and Specificity
17.
Dis Model Mech ; 8(9): 1141-53, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26204894

ABSTRACT

Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis in susceptible humans. Here, we infected Diversity Outbred (DO) mice with ∼100 bacilli by aerosol to model responses in a highly heterogeneous population. Following infection, 'supersusceptible', 'susceptible' and 'resistant' phenotypes emerged. TB disease (reduced survival, weight loss, high bacterial load) correlated strongly with neutrophils, neutrophil chemokines, tumor necrosis factor (TNF) and cell death. By contrast, immune cytokines were weak correlates of disease. We next applied statistical and machine learning approaches to our dataset of cytokines and chemokines from lungs and blood. Six molecules from the lung: TNF, CXCL1, CXCL2, CXCL5, interferon-γ (IFN-γ), interleukin 12 (IL-12); and two molecules from blood - IL-2 and TNF - were identified as being important by applying both statistical and machine learning methods. Using molecular features to generate tree classifiers, CXCL1, CXCL2 and CXCL5 distinguished four classes (supersusceptible, susceptible, resistant and non-infected) from each other with approximately 77% accuracy using completely independent experimental data. By contrast, models based on other molecules were less accurate. Low to no IFN-γ, IL-12, IL-2 and IL-10 successfully discriminated non-infected mice from infected mice but failed to discriminate disease status amongst supersusceptible, susceptible and resistant M.-tuberculosis-infected DO mice. Additional analyses identified CXCL1 as a promising peripheral biomarker of disease and of CXCL1 production in the lungs. From these results, we conclude that: (1) DO mice respond variably to M. tuberculosis infection and will be useful to identify pathways involving necrosis and neutrophils; (2) data from DO mice is suited for machine learning methods to build, validate and test models with independent data based solely on molecular biomarkers; (3) low levels of immunological cytokines best indicate a lack of exposure to M. tuberculosis but cannot distinguish infection from disease.


Subject(s)
Lung/pathology , Neutrophils/metabolism , Tuberculosis/blood , Tuberculosis/pathology , Animals , Biomarkers/blood , Chemokine CXCL1/blood , Chemokine CXCL2/blood , Chemokine CXCL5/blood , Chemokines/blood , Cytokines/blood , Disease Models, Animal , Female , Genetic Predisposition to Disease , Interferon-gamma/blood , Machine Learning , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis , Necrosis , Tumor Necrosis Factor-alpha/blood
18.
PLoS One ; 7(3): e32227, 2012.
Article in English | MEDLINE | ID: mdl-22479315

ABSTRACT

The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models.


Subject(s)
Bone Neoplasms/pathology , Bone and Bones/anatomy & histology , Brain/anatomy & histology , Breast Neoplasms/pathology , Breast/anatomy & histology , Glioma/pathology , Algorithms , Bone and Bones/cytology , Brain/cytology , Breast/cytology , Cell Culture Techniques , Female , Humans , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Models, Anatomic
19.
Infect Genet Evol ; 12(4): 767-81, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21903179

ABSTRACT

In this study we explore publicly available web tools designed to use molecular epidemiological data to extract information that can be employed for the effective tracking and control of tuberculosis (TB). The application of molecular methods for the epidemiology of TB complement traditional approaches used in public health. DNA fingerprinting methods are now routinely employed in TB surveillance programs and are primarily used to detect recent transmissions and in outbreak investigations. Here we present web tools that facilitate systematic analysis of Mycobacterium tuberculosis complex (MTBC) genotype information and provide a view of the genetic diversity in the MTBC population. These tools help answer questions about the characteristics of MTBC strains, such as their pathogenicity, virulence, immunogenicity, transmissibility, drug-resistance profiles and host-pathogen associativity. They provide an integrated platform for researchers to use molecular epidemiological data to address current challenges in the understanding of TB dynamics and the characteristics of MTBC.


Subject(s)
Mycobacterium tuberculosis/genetics , Software , DNA Fingerprinting , DNA, Bacterial , Databases, Nucleic Acid , Genotype , Host-Pathogen Interactions , Humans , Internet , Management Information Systems , Minisatellite Repeats , Mutation , Mycobacterium tuberculosis/classification , Phylogeny , Phylogeography , Polymorphism, Single Nucleotide , Tuberculosis/epidemiology , Tuberculosis/transmission
20.
PLoS One ; 7(3): e32906, 2012.
Article in English | MEDLINE | ID: mdl-22403724

ABSTRACT

Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues.


Subject(s)
Models, Biological , Morphogenesis , Salivary Glands/growth & development , Animals , Artificial Intelligence , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Computer Graphics , Epithelial Cells/cytology , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Mesoderm/cytology , Mesoderm/drug effects , Mice , Molecular Imaging , Morphogenesis/drug effects , Protein Kinase Inhibitors/pharmacology , Reproducibility of Results , Salivary Glands/cytology , Salivary Glands/metabolism , Signal Transduction/drug effects , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL