Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cereb Cortex ; 34(1)2024 01 14.
Article in English | MEDLINE | ID: mdl-38061696

ABSTRACT

Working memory, which is foundational to higher cognitive function, is the "sketchpad of volitional control." Successful working memory is the inevitable outcome of the individual's active control and manipulation of thoughts and turning them into internal goals during which the causal brain processes information in real time. However, little is known about the dynamic causality among distributed brain regions behind thought control that underpins successful working memory. In our present study, given that correct responses and incorrect ones did not differ in either contralateral delay activity or alpha suppression, further rooting on the high-temporal-resolution EEG time-varying directed network analysis, we revealed that successful working memory depended on both much stronger top-down connections from the frontal to the temporal lobe and bottom-up linkages from the occipital to the temporal lobe, during the early maintenance period, as well as top-down flows from the frontal lobe to the central areas as the delay behavior approached. Additionally, the correlation between behavioral performance and casual interactions increased over time, especially as memory-guided delayed behavior approached. Notably, when using the network metrics as features, time-resolved multiple linear regression of overall behavioral accuracy was exactly achieved as delayed behavior approached. These results indicate that accurate memory depends on dynamic switching of causal network connections and shifting to more task-related patterns during which the appropriate intervention may help enhance memory.


Subject(s)
Brain , Memory, Short-Term , Memory, Short-Term/physiology , Brain/physiology , Temporal Lobe/physiology , Frontal Lobe/physiology , Brain Mapping
2.
Cereb Cortex ; 33(15): 9429-9437, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37328940

ABSTRACT

Risky decision-making is affected by past feedback, especially after encountering the beneficial loss in the past decision-making round, yet little is known about the mechanism accounting for the distinctive decision-making that different individuals may make under the past loss context. We extracted decision functional medial frontal negative (MFN) and the cortical thickness (CT) from multi-modality electroencephalography (EEG) and T1-weighted structural MRI (sMRI) datasets to assess the individual risky decision under the past loss context. First, concerning the MFN, the low-risk group (LRG) exhibits larger MFN amplitude and longer reaction time than the high-risk group (HRG) when making risky decisions under the loss context. Subsequently, the sMRI analysis reveals a greater CT in the left anterior insula (AI) for HRG compared with LRG, and a greater CT in AI is associated with a high level of impulsivity, driving individuals to make risky choices under the past loss context. Furthermore, for all participants, the corresponding risky decision behavior could be exactly predicted as a correlation coefficient of 0.523 was acquired, and the classification by combing the MFN amplitude and the CT of the left AI also achieves an accuracy of 90.48% to differentiate the two groups. This study may offer new insight into understanding the mechanism that accounts for the inter-individual variability of risky decisions under the loss context and denotes new indices for the prediction of the risky participants.


Subject(s)
Decision Making , Electroencephalography , Humans , Decision Making/physiology , Risk-Taking , Magnetic Resonance Imaging , Electrophysiology
3.
Cereb Cortex ; 33(14): 8904-8912, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37191346

ABSTRACT

Despite node-centric studies revealing an association between resting-state functional connectivity and individual risk propensity, the prediction of future risk decisions remains undetermined. Herein, we applied a recently emerging edge-centric method, the edge community similarity network (ECSN), to alternatively describe the community structure of resting-state brain activity and to probe its contribution to predicting risk propensity during gambling. Results demonstrated that inter-individual variability of risk decisions correlates with the inter-subnetwork couplings spanning the visual network (VN) and default mode network (DMN), cingulo-opercular task control network, and sensory/somatomotor hand network (SSHN). Particularly, participants who have higher community similarity of these subnetworks during the resting state tend to choose riskier and higher yielding bets. And in contrast to low-risk propensity participants, those who behave high-risky show stronger couplings spanning the VN and SSHN/DMN. Eventually, based on the resting-state ECSN properties, the risk rate during the gambling task is effectively predicted by the multivariable linear regression model at the individual level. These findings provide new insights into the neural substrates of the inter-individual variability in risk propensity and new neuroimaging metrics to predict individual risk decisions in advance.


Subject(s)
Brain Mapping , Brain , Humans , Brain/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Creativity
4.
Neuroimage ; 270: 119997, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36868393

ABSTRACT

The brain functions as an accurate circuit that regulates information to be sequentially propagated and processed in a hierarchical manner. However, it is still unknown how the brain is hierarchically organized and how information is dynamically propagated during high-level cognition. In this study, we developed a new scheme for quantifying the information transmission velocity (ITV) by combining electroencephalogram (EEG) and diffusion tensor imaging (DTI), and then mapped the cortical ITV network (ITVN) to explore the information transmission mechanism of the human brain. The application in MRI-EEG data of P300 revealed bottom-up and top-down ITVN interactions subserving P300 generation, which was comprised of four hierarchical modules. Among these four modules, information exchange between visual- and attention-activated regions occurred at a high velocity, related cognitive processes could thus be efficiently accomplished due to the heavy myelination of these regions. Moreover, inter-individual variability in P300 was probed to be attributed to the difference in information transmission efficiency of the brain, which may provide new insight into the cognitive degenerations in clinical neurodegenerative disorders, such as Alzheimer's disease, from the transmission velocity perspective. Together, these findings confirm the capacity of ITV to effectively determine the efficiency of information propagation in the brain.


Subject(s)
Brain , Diffusion Tensor Imaging , Humans , Brain/physiology , Cognition/physiology , Electroencephalography/methods , Brain Mapping/methods
5.
Hum Brain Mapp ; 44(6): 2279-2293, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36661190

ABSTRACT

Autism spectrum disorder (ASD) is a pervasive developmental disorder with severe cognitive impairment in social communication and interaction. Previous studies have reported that abnormal functional connectivity patterns within the default mode network (DMN) were associated with social dysfunction in ASD. However, how the altered causal connectivity pattern within the DMN affects the social functioning in ASD remains largely unclear. Here, we introduced the Liang information flow method, widely applied to climate science and quantum mechanics, to uncover the brain causal network patterns in ASD. Compared with the healthy controls (HC), we observed that the interactions among the dorsal medial prefrontal cortex (dMPFC), ventral medial prefrontal cortex (vMPFC), hippocampal formation, and temporo-parietal junction showed more inter-regional causal connectivity differences in ASD. For the topological property analysis, we also found the clustering coefficient of DMN and the In-Out degree of anterior medial prefrontal cortex were significantly decreased in ASD. Furthermore, we found that the causal connectivity from dMPFC to vMPFC was correlated with the clinical symptoms of ASD. These altered causal connectivity patterns indicated that the DMN inter-regions information processing was perturbed in ASD. In particular, we found that the dMPFC acts as a causal source in the DMN in HC, whereas it plays a causal target in ASD. Overall, our findings indicated that the Liang information flow method could serve as an important way to explore the DMN causal connectivity patterns, and it also can provide novel insights into the nueromechanisms underlying DMN dysfunction in ASD.


Subject(s)
Autism Spectrum Disorder , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain Mapping/methods , Default Mode Network , Magnetic Resonance Imaging/methods , Neural Pathways/diagnostic imaging , Brain/diagnostic imaging
6.
Neuroimage ; 205: 116285, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31629829

ABSTRACT

The P300 event-related potential (ERP) varies across individuals, and exploring this variability deepens our knowledge of the event, and scope for its potential applications. Previous studies exploring the P300 have relied on either electroencephalography (EEG) or functional magnetic resonance imaging (fMRI). We applied simultaneous event-related EEG-fMRI to investigate how the network structure is updated from rest to the P300 task so as to guarantee information processing in the oddball task. We first identified 14 widely distributed regions of interest (ROIs) that were task-associated, including the inferior frontal gyrus and the middle frontal gyrus, etc. The task-activated network was found to closely relate to the concurrent P300 amplitude, and moreover, the individuals with optimized resting-state brain architectures experienced the pruning of network architecture, i.e. decreasing connectivity, when the brain switched from rest to P300 task. Our present simultaneous EEG-fMRI study explored the brain reconfigurations governing the variability in P300 across individuals, which provided the possibility to uncover new biomarkers to predict the potential for personalized control of brain-computer interfaces.


Subject(s)
Cerebral Cortex/physiology , Connectome , Electroencephalography , Event-Related Potentials, P300/physiology , Magnetic Resonance Imaging , Nerve Net/physiology , Psychomotor Performance/physiology , Rest/physiology , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , Nerve Net/diagnostic imaging , Young Adult
7.
Brain Topogr ; 32(2): 304-314, 2019 03.
Article in English | MEDLINE | ID: mdl-30474793

ABSTRACT

Mentally imagining rather physically executing the motor behaviors is defined as motor imagery (MI). During MI, the mu rhythmical oscillation of cortical neurons is the event-related desynchronization (ERD) subserving the physiological basis of MI-based brain-computer interface. In our work, we investigated the specific brain network reconfiguration from rest idle to MI task states, and also probed the underlying relationship between the brain network reconfiguration and MI related ERD. Findings revealed that comparing to rest state, the MI showed the enhanced motor area related linkages and the deactivated activity of default mode network. In addition, the reconfigured network index was closely related to the ERDs, i.e., the higher the reconfigured network index was, the more obvious the ERDs were. These findings consistently implied that the reconfiguration from rest to task states underlaid the reallocation of related brain resources, and the efficient brain reconfiguration corresponded to a better MI performance, which provided the new insights into understanding the mechanism of MI as well as the potential biomarker to evaluate the rehabilitation quality for those patients with deficits of motor function.


Subject(s)
Brain/physiology , Electroencephalography , Imagination/physiology , Movement/physiology , Nerve Net/physiology , Algorithms , Cerebral Cortex/physiology , Electroencephalography Phase Synchronization , Female , Humans , Male , Motor Cortex/physiology , Rest/physiology , Scalp
8.
Med Biol Eng Comput ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38834855

ABSTRACT

Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH "noisy" brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton's depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton's anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.

9.
Article in English | MEDLINE | ID: mdl-39388321

ABSTRACT

Nonparametric estimation of time-varying directed networks can unveil the intricate transient organization of directed brain communication while circumventing constraints imposed by prescribed model-driven methods. A robust time-frequency representation - the foundation of its causality inference - is critical for enhancing its reliability. This study proposed a novel method, i.e., nonparametric dynamic Granger causality based on Multi-space Spectrum Fusion (ndGCMSF), which integrates complementary spectrum information from different spaces to generate reliable spectral representations to estimate dynamic causalities across brain regions. Systematic simulations and validations demonstrate that ndGCMSF exhibits superior noise resistance and a powerful ability to capture subtle dynamic changes in directed brain networks. Particularly, ndGCMSF revealed that during instruction response movements, the laterality in the hemisphere ipsilateral to the hemiplegic limb emerges upon instruction onset and diminishes upon task accomplishment. These intrinsic variations further provide reliable features for distinguishing two types of hemiplegia (left vs. right) and assessing motor functions. The ndGCMSF offers powerful functional patterns to derive effective brain networks in dynamically changing operational settings and contributes to extensive areas involving dynamical and directed communications.

10.
Article in English | MEDLINE | ID: mdl-38837930

ABSTRACT

Motor imagery (MI) is a high-level cognitive process that has been widely applied to clinical rehabilitation and brain-computer interfaces (BCIs). However, the decoding of MI tasks still faces challenges, and the neural mechanisms underlying its application are unclear, which seriously hinders the development of MI-based clinical applications and BCIs. Here, we combined EEG source reconstruction and Bayesian nonnegative matrix factorization (NMF) methods to construct large-scale cortical networks of left-hand and right-hand MI tasks. Compared to right-hand MI, the results showed that the significantly increased functional network connectivities (FNCs) mainly located among the visual network (VN), sensorimotor network (SMN), right temporal network, right central executive network, and right parietal network in the left-hand MI at the ß (13-30Hz) and all (8-30Hz) frequency bands. For the network properties analysis, we found that the clustering coefficient, global efficiency, and local efficiency were significantly increased and characteristic path length was significantly decreased in left-hand MI compared to right-hand MI at the ß and all frequency bands. These network pattern differences indicated that the left-hand MI may need more modulation of multiple large-scale networks (i.e., VN and SMN) mainly located in the right hemisphere. Finally, based on the spatial pattern network of FNC and network properties, we propose a classification model. The proposed model achieves a top classification accuracy of 78.2% in cross-subject two-class MI-BCI tasks. Overall, our findings provide new insights into the neural mechanisms of MI and a potential network biomarker to identify MI-BCI tasks.


Subject(s)
Algorithms , Bayes Theorem , Brain-Computer Interfaces , Electroencephalography , Imagination , Nerve Net , Humans , Male , Imagination/physiology , Electroencephalography/methods , Young Adult , Adult , Female , Nerve Net/physiology , Hand/physiology , Cerebral Cortex/physiology , Functional Laterality/physiology , Movement/physiology
11.
Int J Neural Syst ; 34(4): 2450018, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372035

ABSTRACT

Cognitive flexibility refers to the capacity to shift between patterns of mental function and relies on functional activity supported by anatomical structures. However, how the brain's structural-functional covarying is preconfigured in the resting state to facilitate cognitive flexibility under tasks remains unrevealed. Herein, we investigated the potential relationship between individual cognitive flexibility performance during the trail-making test (TMT) and structural-functional covariation of the large-scale multimodal covariance network (MCN) using magnetic resonance imaging (MRI) and electroencephalograph (EEG) datasets of 182 healthy participants. Results show that cognitive flexibility correlated significantly with the intra-subnetwork covariation of the visual network (VN) and somatomotor network (SMN) of MCN. Meanwhile, inter-subnetwork interactions across SMN and VN/default mode network/frontoparietal network (FPN), as well as across VN and ventral attention network (VAN)/dorsal attention network (DAN) were also found to be closely related to individual cognitive flexibility. After using resting-state MCN connectivity as representative features to train a multi-layer perceptron prediction model, we achieved a reliable prediction of individual cognitive flexibility performance. Collectively, this work offers new perspectives on the structural-functional coordination of cognitive flexibility and also provides neurobiological markers to predict individual cognitive flexibility.


Subject(s)
Executive Function , Magnetic Resonance Imaging , Humans , Electroencephalography , Neural Pathways/diagnostic imaging , Cognition , Brain/diagnostic imaging , Brain Mapping
12.
Article in English | MEDLINE | ID: mdl-37463076

ABSTRACT

Granger causality-based effective brain connectivity provides a powerful tool to probe the neural mechanism for information processing and the potential features for brain computer interfaces. However, in real applications, traditional Granger causality is prone to the influence of outliers, such as inevitable ocular artifacts, resulting in unreasonable brain linkages and the failure to decipher inherent cognition states. In this work, motivated by constructing the sparse causality brain networks under the strong physiological outlier noise conditions, we proposed a dual Laplacian Granger causality analysis (DLap-GCA) by imposing Laplacian distributions on both model parameters and residuals. In essence, the first Laplacian assumption on residuals will resist the influence of outliers in electroencephalogram (EEG) on causality inference, and the second Laplacian assumption on model parameters will sparsely characterize the intrinsic interactions among multiple brain regions. Through simulation study, we quantitatively verified its effectiveness in suppressing the influence of complex outliers, the stable capacity for model estimation, and sparse network inference. The application to motor-imagery (MI) EEG further reveals that our method can effectively capture the inherent hemispheric lateralization of MI tasks with sparse patterns even under strong noise conditions. The MI classification based on the network features derived from the proposed approach shows higher accuracy than other existing traditional approaches, which is attributed to the discriminative network structures being captured in a timely manner by DLap-GCA even under the single-trial online condition. Basically, these results consistently show its robustness to the influence of complex outliers and the capability of characterizing representative brain networks for cognition information processing, which has the potential to offer reliable network structures for both cognitive studies and future brain-computer interface (BCI) realization.

13.
Article in English | MEDLINE | ID: mdl-37022898

ABSTRACT

Accurately decoding motor imagery (MI) brain-computer interface (BCI) tasks has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, less subject information and low signal-to-noise ratio of MI electroencephalography (EEG) signals make it difficult to decode the movement intentions of users. In this study, we proposed an end-to-end deep learning model, a multi-branch spectral-temporal convolutional neural network with channel attention and LightGBM model (MBSTCNN-ECA-LightGBM), to decode MI-EEG tasks. We first constructed a multi branch CNN module to learn spectral-temporal domain features. Subsequently, we added an efficient channel attention mechanism module to obtain more discriminative features. Finally, LightGBM was applied to decode the MI multi-classification tasks. The within-subject cross-session training strategy was used to validate classification results. The experimental results showed that the model achieved an average accuracy of 86% on the two-class MI-BCI data and an average accuracy of 74% on the four-class MI-BCI data, which outperformed current state-of-the-art methods. The proposed MBSTCNN-ECA-LightGBM can efficiently decode the spectral and temporal domain information of EEG, improving the performance of MI-based BCIs.

14.
Brain Res Bull ; 205: 110812, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37951276

ABSTRACT

Acoustic stimulation is one of the most influential techniques for distressing tinnitus, while how it functions to reverse neural changes associated with tinnitus remains undisclosed. In this study, our objective is to investigate alterations in brain networks to shed light on the enigma of acoustic intervention for tinnitus. We designed a 75-day long-term acoustic intervention experiment, during which chronic tinnitus patients received daily modulated acoustic stimulation with each session lasting 15 days. Every 15 days, professional tinnitus assessments were conducted, collecting both electroencephalogram (EEG) and tinnitus handicap inventory (THI) data from the patients. Thereafter, we investigated the changes in EEG network organizations during continuous acoustic stimulation and their progressive evolution throughout long-term therapy, alongside exploring the associations between the evolving changes of the network alterations and THI. Our current study findings reveal reorganization in alpha/beta long-range frontal-parietal-occipital connections as well as local frontal and parietal-occipital regions induced by acoustic stimulation. Furthermore, we observed a decrease in modulation effects as therapy sessions progressed. These alterations in brain networks reflect the reversal of tinnitus-related neural activities, particularly distress and perception; thus contributing to tinnitus rehabilitation through long-term modulation effects. This study provides unique insights into how long-term acoustic intervention affects the network organizations of tinnitus patients and deepens our understanding of the pathophysiological mechanisms underlying tinnitus rehabilitation.


Subject(s)
Tinnitus , Humans , Acoustic Stimulation/methods , Tinnitus/therapy , Electroencephalography , Parietal Lobe
15.
Research (Wash D C) ; 6: 0171, 2023.
Article in English | MEDLINE | ID: mdl-37303601

ABSTRACT

Human cognition is usually underpinned by intrinsic structure and functional neural co-activation in spatially distributed brain regions. Owing to lacking an effective approach to quantifying the covarying of structure and functional responses, how the structural-functional circuits interact and how genes encode the relationships, to deepen our knowledge of human cognition and disease, are still unclear. Here, we propose a multimodal covariance network (MCN) construction approach to capture interregional covarying of the structural skeleton and transient functional activities for a single individual. We further explored the potential association between brain-wide gene expression patterns and structural-functional covarying in individuals involved in a gambling task and individuals with major depression disorder (MDD), adopting multimodal data from a publicly available human brain transcriptomic atlas and 2 independent cohorts. MCN analysis showed a replicable cortical structural-functional fine map in healthy individuals, and the expression of cognition- and disease phenotype-related genes was found to be spatially correlated with the corresponding MCN differences. Further analysis of cell type-specific signature genes suggests that the excitatory and inhibitory neuron transcriptomic changes could account for most of the observed correlation with task-evoked MCN differences. In contrast, changes in MCN of MDD patients were enriched for biological processes related to synapse function and neuroinflammation in astrocytes, microglia, and neurons, suggesting its promising application in developing targeted therapies for MDD patients. Collectively, these findings confirmed the correlations of MCN-related differences with brain-wide gene expression patterns, which captured genetically validated structural-functional differences at the cellular level in specific cognitive processes and psychiatric patients.

16.
Psychiatry Res Neuroimaging ; 331: 111632, 2023 06.
Article in English | MEDLINE | ID: mdl-36958075

ABSTRACT

Auditory verbal hallucinations (AVH) are a core positive symptom of schizophrenia and are regarded as a consequence of the functional breakdown in the related sensory process. Yet, the potential mechanism of AVH is still lacking. In the present study, we explored the difference between AVHs (n = 23) and non-AVHs (n = 19) in schizophrenia and healthy controls (n = 29) by using multidimensional electroencephalograms data during an auditory oddball task. Compared to healthy controls, both AVH and non-AVH groups showed reduced P300 amplitudes. Additionally, the results from brain networks analysis revealed that AVH patients showed reduced left frontal to posterior parietal/temporal connectivity compared to non-AVH patients. Moreover, using the fused network properties of both delta and theta bands as features for in-depth learning made it possible to identify the AVH from non-AVH patients at an accuracy of 80.95%. The left frontal-parietal/temporal networks seen in the auditory oddball paradigm might be underlying biomarkers of AVH in schizophrenia. This study demonstrated for the first time the functional breakdown of the auditory processing pathway in the AVH patients, leading to a better understanding of the atypical brain network of the AVH patients.


Subject(s)
Auditory Perception , Brain , Electroencephalography , Hallucinations , Neural Pathways , Schizophrenia , Adolescent , Adult , Humans , Young Adult , Brain/diagnostic imaging , Brain/physiopathology , Event-Related Potentials, P300 , Hallucinations/complications , Hallucinations/physiopathology , Schizophrenia/complications , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology
17.
Int J Neural Syst ; 32(7): 2250035, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35719086

ABSTRACT

Cognitive processes induced by the specific task are underpinned by intrinsic anatomical structures with functional neural activation patterns. However, current covariance network analysis still pays much attention to brain morphologies or baseline activity due to the lack of an effective method for capturing the structural-functional covarying during tasks. Here, a multimodal covariance network (MCN) construction method was proposed to identify inter-regional covariations of the structural skeleton and functional activities by simultaneous magnetic resonance imaging and electroencephalogram (EEG). Results from two independent cohorts confirmed that MCNs could capture cognition-specific hierarchical modules in joint comprehensive multimodal features well, especially when time-resolved EEG was further integrated. The quantitative evaluation further demonstrates significantly larger modularity of MCN integrating fine-grained features from EEG. The application to the discovery cohort identified prominent modular covarying across the default mode and salience networks at rest, while the visual oddball task was accomplished by synchronous structural-functional cooperation within networks associated with attention control and working memory updating. Strikingly, the results of an external validation cohort showed a different covariant pattern corresponding to decision-specific cognitive modules. Overall, the results suggested that multimodal covariance analysis provides a reliable definition of multistate neural cognitive networks, further discloses modular-specific structural and functional co-variation.


Subject(s)
Brain , Magnetic Resonance Imaging , Brain/diagnostic imaging , Brain/physiology , Brain Mapping , Cognition/physiology , Electroencephalography , Humans , Memory, Short-Term/physiology
18.
IEEE Trans Cybern ; 52(12): 12869-12881, 2022 Dec.
Article in English | MEDLINE | ID: mdl-34398778

ABSTRACT

As a kind of biological network, the brain network conduces to understanding the mystery of high-efficiency information processing in the brain, which will provide instructions to develop efficient brain-like neural networks. Large-scale dynamical functional network connectivity (dFNC) provides a more context-sensitive, dynamical, and straightforward sight at a higher network level. Nevertheless, dFNC analysis needs good enough resolution in both temporal and spatial domains, and the construction of dFNC needs to capture the time-varying correlations between two multivariate time series with unmatched spatial dimensions. Effective methods still lack. With well-developed source imaging techniques, electroencephalogram (EEG) has the potential to possess both high temporal and spatial resolutions. Therefore, we proposed to construct the EEG large-scale cortical dFNC based on brain atlas to probe the subtle dynamic activities in the brain and developed a novel method, that is, wavelet coherence-S estimator (WTCS), to assess the dynamic couplings among functional subnetworks with different spatial dimensions. The simulation study demonstrated its robustness and availability of applying to dFNC. The application in real EEG data revealed the appealing "Primary peak" and "P3-like peak" in dFNC network properties and meaningful evolutions in dFNC network topology for P300. Our study brings new insights for probing brain activities at a more dynamical and higher hierarchical level and pushing forward the development of brain-inspired artificial neural networks. The proposed WTCS not only benefits the dFNC studies but also gives a new solution to capture the time-varying couplings between the multivariate time series that is often encountered in signal processing disciplines.


Subject(s)
Electroencephalography , Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods , Electroencephalography/methods , Brain/diagnostic imaging , Neural Networks, Computer , Signal Processing, Computer-Assisted
19.
Cogn Neurodyn ; 16(5): 975-985, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36237399

ABSTRACT

P300 as an effective biomarker to index attention and memory has been widely used for brain-computer interface, cognitive evaluation, and clinical diagnosis. To evoke clear P300, an oddball paradigm consisting of two types of stimuli, i.e., infrequent target stimuli and frequent standard stimuli, is usually used. However, to simply and quickly explore the P300-related process, previous studies predominately focused on the target condition but ignored the fusion of target and standard conditions, as well as the difference of brain networks between them. Therefore, in this study, we used the hidden Markov model to investigate the fused multi-conditional electroencephalogram dataset of P300, aiming to effectively identify the underlying brain networks and explore the difference between conditions. Specifically, the inferred networks, including their transition sequences and spatial distributions, were scrutinized first. Then, we found that the difference between target and standard conditions was mainly concentrated in two phases. One was the stimulation phase that mainly related to the cortical activities of the postcentral gyrus and superior parietal lobule, and the other corresponded to the response phase that involved the activities of superior and medial frontal gyri. This might be attributed to distinct cognitive functions, as the stimulation phase is associated with visual information integration whereas the response phase involves stimulus discrimination and behavior control. Taken together, the current work explored dynamic networks underlying the P300-related process and provided a complementary understanding of distinct P300 conditions, which may contribute to the design of P300-related brain-machine systems.

20.
J Neural Eng ; 19(5)2022 10 28.
Article in English | MEDLINE | ID: mdl-36223728

ABSTRACT

Objective.Repetitive transcranial magnetic stimulation (rTMS) emerges as a useful therapy for autism spectrum disorder (ASD) clinically. Whereas the mechanisms of action of rTMS on ASD are not fully understood, and no biomarkers until now are available to reliably predict the follow-up rTMS efficacy in clinical practice.Approach.In the current work, the temporal variability was investigated in resting-state electroencephalogram of ASD patients, and the nonlinear complexity of related time-varying networks was accordingly evaluated by fuzzy entropy.Main results.The results showed the hyper-variability in the resting-state networks of ASD patients, while three week rTMS treatment alleviates the hyper fluctuations occurring in the frontal-parietal and frontal-occipital connectivity and further contributes to the ameliorative ASD symptoms. In addition, the changes in variability network properties are closely correlated with clinical scores, which further serve as potential predictors to reliably track the long-term rTMS efficacy for ASD.Significance.The findings consistently demonstrated that the temporal variability of time-varying networks of ASD patients could be modulated by rTMS, and related variability properties also help predict follow-up rTMS efficacy, which provides the potential for formulating individualized treatment strategies for ASD (ChiCTR2000033586).


Subject(s)
Autism Spectrum Disorder , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/therapy , Scalp , Electroencephalography/methods
SELECTION OF CITATIONS
SEARCH DETAIL