Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
J Dairy Sci ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39004134

ABSTRACT

Beta-lactoglobulin (ß-LG) is considered to be the major allergenic protein in milk. Lactic acid bacteria (LAB) possess a protein hydrolysis system that holds great promise for hydrolyzing ß-LG and reducing its allergenicity. Therefore, this study aimed to screen LAB with ß-LG hydrolysis activity from Yunnan traditional fermented foods. The results showed that Pediococcus pentosaceus C1001, Pediococcus acidilactici E1601-1, and Lactobacillus paracasei E1601-2, could effectively hydrolyze ß-LG and further reduce its sensitization (more than 40%). All 3 lactic acid bacteria hydrolyzed ß-LG allergenic fragments V41-K60 and L149-I162. Moreover, they encode a variety of genes related to proteolysis, such as aminopeptidase pepC and pepN, proline peptidase pepIP and endopeptidase pepO, and L. paracasei E1601-2 contains extracellular protease coding gene prtP. And they encode a variety of genes associated with hydrolyzed proteins. The 3 strains screened in this study can be used to develop hypoallergenic dairy products.

2.
J Transl Med ; 21(1): 254, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37046345

ABSTRACT

BACKGROUND: Metastasis, the leading cause of cancer-related death in patients diagnosed with ovarian cancer (OC), is a complex process that involves multiple biological effects. With the continuous development of sequencing technology, single-cell sequence has emerged as a promising strategy to understand the pathogenesis of ovarian cancer. METHODS: Through integrating 10 × single-cell data from 12 samples, we developed a single-cell map of primary and metastatic OC. By copy-number variations analysis, pseudotime analysis, enrichment analysis, and cell-cell communication analysis, we explored the heterogeneity among OC cells. We performed differential expression analysis and high dimensional weighted gene co-expression network analysis to identify the hub genes of C4. The effects of RAB13 on OC cell lines were validated in vitro. RESULTS: We discovered a cell subcluster, referred to as C4, that is closely associated with metastasis and poor prognosis in OC. This subcluster correlated with an epithelial-mesenchymal transition (EMT) and angiogenesis signature and RAB13 was identified as the key marker of it. Downregulation of RAB13 resulted in a reduction of OC cells migration and invasion. Additionally, we predicted several potential drugs that might inhibit RAB13. CONCLUSIONS: Our study has identified a cell subcluster that is closely linked to metastasis in OC, and we have also identified RAB13 as its hub gene that has great potential to become a new therapeutic target for OC.


Subject(s)
Ovarian Neoplasms , Transcriptome , Humans , Female , Transcriptome/genetics , Ovarian Neoplasms/pathology , Cell Movement/genetics , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
Int J Mol Sci ; 24(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36768806

ABSTRACT

This study systematically investigated the differences in allergenicity of casein in cow milk (CM), goat milk (GM), camel milk (CAM), and mare milk (MM) from protein structures using bioinformatics. Primary structure sequence analysis reveals high sequence similarity between the α-casein of CM and GM, while all allergenic subtypes are likely to have good hydrophilicity and thermal stability. By analyzing linear B-cell epitope, T-cell epitope, and allergenic peptides, the strongest casein allergenicity is observed for CM, followed by GM, and the casein of MM has the weakest allergenicity. Meanwhile, 7, 9, and 16 similar or identical amino acid fragments in linear B-cell epitopes, T-cell epitopes, and allergenic peptides, respectively, were observed in different milks. Among these, the same T-cell epitope FLGAEVQNQ was shared by κ-CN in all four different species' milk. Epitope results may provide targets of allergenic fragments for reducing milk allergenicity through physical or/and chemical methods. This study explained the underlying secrets for the high allergenicity of CM to some extent from the perspective of casein and provided new insights for the dairy industry to reduce milk allergy. Furthermore, it provides a new idea and method for comparing the allergenicity of homologous proteins from different species.


Subject(s)
Camelus , Caseins , Animals , Female , Horses , Cattle , Caseins/chemistry , Allergens/metabolism , Goats/metabolism , Epitopes, T-Lymphocyte , Immunoglobulin E , Peptides , Epitopes, B-Lymphocyte , Milk Proteins
4.
J Sci Food Agric ; 103(2): 666-679, 2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36054255

ABSTRACT

BACKGROUND: Recently, cloudy pomegranate juice (PJ) has become popular due to its rich phenolic and health-promoting effects. The aim of the present work was to evaluate the application of high hydrostatic pressure processing (HPP), pasteurization (PT) and high-temperature short-time sterilization (HTST) on physicochemical properties (color, flow behavior, turbidity, sugars, organic acids, aroma and sensory evaluation) and in vitro bioaccessibility of total phenolics content (TPC), total flavonoids content (TFC) and phenolics of cloudy PJ. RESULTS: Compared to HPP, thermal sterilization significantly increased the brightness (L*), redness (a*), total color difference (ΔE) and turbidity, and decreased the TPC and TFC. HPP maintained the volatile profile of cloudy PJ better, while thermal sterilization significantly changed the profile by decreasing alcohols 23.8-32.7% and increasing acids by 33.6%-182.8%. The bioaccessibility of flavonoids, phenolic acids and tannins in the control cloudy PJ after in vitro oral-gastric-intestinal digestion were 1.5%, 4.9%, and 9.0%, respectively, which were not significantly changed by different treatments. CONCLUSION: These results contributed to promoting the color quality and health benefits of cloudy PJ rich in phenolics by optimizing the processing conditions in the food industry. © 2022 Society of Chemical Industry.


Subject(s)
Pomegranate , Fruit and Vegetable Juices , Pasteurization , Phenols/analysis , Flavonoids
5.
Int J Biol Macromol ; 254(Pt 3): 127920, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37944739

ABSTRACT

This study investigated the effect of κ-carrageenan and l-lysine on the physical, chemical and textural properties of yellow flesh peaches and their suitability for 3D printing. The addition of κ-carrageenan and l-lysine was found to improve the apparent viscosity, elasticity, gel strength, and Young's modulus of the yellow flesh peach with κ-carrageenan and l-lysine gels (PCLG) and increase the minimum piston pressure required for 3D printing, thereby improving the printing performance. Optimum levels of κ-carrageenan and l-lysine (0.1 mmol/mL and 3.42 × 10-2 mmol/mL, respectively) were found to enhance mechanical strength, viscoelasticity and print fidelity. On the other hand, when the addition of κ-carrageenan is 0.1 mmol/mL, the addition of l-lysine causes an increase in the G0 value and a decrease in the η0 value of the PCLG according to Burger's model, indicating a transition from viscosity to elasticity and an increase in maximum extrusion force, while the apparent viscosity does not change significantly. The results of 3D printing showed that when the addition of κ-carrageenan and l-lysine reached 0.1 mmol/mL and 6.84 × 10-2 mmol/mL, respectively, the PCLG could not be smoothly extruded, indicating that elasticity also plays an important role during the extrusion process of the mixed gel.


Subject(s)
Prunus persica , Carrageenan/chemistry , Lysine , Gels/chemistry , Elasticity , Printing, Three-Dimensional , Rheology
6.
Foods ; 13(10)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790884

ABSTRACT

Fresh-cut apple preservation is a critical concern in the food industry due to the rapid deterioration of texture, color, and flavor. While our previous study introduced apple essence microencapsulation (AEM) to enhance flavor during storage, its impact on overall storage quality was minimal. Thus, this study explores the application of two preservation techniques, namely, slightly acidic electrolyzed water (SAEW) and chitosan-apple essence microencapsulation (CH-AEM) coating, to enhance the quality of fresh-cut apples. Our findings reveal that SAEW treatment significantly reduces the browning index (from 65.38 to 57.36) and respiratory rate (from 5.10% to 4.30% of CO2), and maintains a desirable aroma profile compared to uncoated treatment during 10 days of storage. Additionally, the CH-AEM coating acts as a protective barrier, further preserving the sensory characteristics of fresh-cut apples. Notably, the SAEW-CH-AEM group exhibits superior performance in firmness (8.14 N), respiratory rate (3.37% of CO2), ion leakage (34.86%), and juice yield (47.52%) after 10 days. Our research highlights the synergistic effect of combining these preservation strategies, providing a promising approach for extending the shelf life of fresh-cut apples while maintaining their visual appeal and aromatic quality. These results offer valuable insights for the fresh-cut produce industry, contributing to improved apple product preservation and consumer satisfaction.

7.
Food Chem ; 456: 139935, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38870805

ABSTRACT

This study investigated the effects of oil phases on the encapsulation rate, storage stability, and bioavailability of astaxanthin (ASTA) in Pickering emulsions (PEs). Results showed PEs of mixed oils (olive oil/edible tea oil) had excellent encapsulation efficiency (about 96.0%) and storage stability of ASTA. In vitro simulated gastrointestinal digestion results showed the mixed oil PE with a smaller interfacial area and higher monounsaturated fatty acid content may play a better role in improving ASTA retention and bioaccessibility. In vivo absorption results confirmed the mixed oil PE with an olive oil/edible tea oil of 7:3 was more favorable for ASTA absorption. Molecular dynamics simulation showed ASTA bound more strongly and stably to fatty acid molecules in the system of olive oil/edible tea oil of 7:3; and van der Waals force was the main binding force. NMR further proved there really were interactions between ASTA and four main fatty acids.


Subject(s)
Biological Availability , Emulsions , Molecular Dynamics Simulation , Olive Oil , Xanthophylls , Xanthophylls/chemistry , Xanthophylls/metabolism , Emulsions/chemistry , Olive Oil/chemistry , Animals , Male , Digestion , Humans , Drug Stability
8.
Food Res Int ; 179: 113941, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342554

ABSTRACT

Fermented vegetables are known for their unique flavors and aromas, which are influenced by the complex microbial processes that occur during fermentation. Rhodotorula mucilaginosa is a red yeast strain that is frequently isolated from fermented vegetables. However, the specific mechanisms underlying their effects on aroma production remain unclear. In this study, a simulated system of vegetables fermented using vegetable juices was used to investigate the effects of R. mucilaginosa inoculation on aroma development. The results demonstrated that this red yeast strain could utilize the nutrients present in the vegetable juices to support its growth and reproduction. Moreover, the inoculation of fermented vegetable juices with this yeast strain led to an increase in the levels of umami amino acids and sweet amino acids. Furthermore, this yeast strain was found able to significantly reduce the content of sulfur-containing compounds, which may decrease the unpleasant odor of fermented vegetables. Additionally, the yeast strain was capable of producing high concentrations of aromatic compounds such as phenylethyl alcohol, methyl 2-methylbutyrate, methyl butyrate, and nonanoic acid in a minimum medium. However, only phenylethyl alcohol has been identified as a core aromatic compound in fermented vegetable juice. The three fermented vegetable juices exhibited significantly different flavor profiles according to comparative analysis. Therefore, the core flavor compounds found in fermented vegetables are primarily derived from the release and modification of endogenous flavors naturally present in the vegetables, facilitated by the yeast during fermentation.


Subject(s)
Biological Products , Phenylethyl Alcohol , Rhodotorula , Odorants/analysis , Vegetables , Phenylethyl Alcohol/analysis , Yeasts , Amino Acids
9.
Food Chem X ; 21: 101092, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38223527

ABSTRACT

The phenolic profiles, antioxidant capacities, cytoprotective effect, and α-glucosidase and DPP-IV inhibitory capacity of free (FP), esterified (EP) and insoluble-bound (IBP) phenolic fractions in 'Lijiang snow' peach juice after high pressure homogenization (HPH) were investigated, and the molecular docking was used to explore the enzyme inhibition mechanism. HPH increased total phenolic and total flavonoid contents in three fractions without changing compositions. The IC50 of radicals scavenged by three fractions were all reduced by HPH. The best inhibition on intracellular ROS production were found for phenolic fractions after HPH at 300 MPa, with ROS levels ranged within 95.26-119.16 %. HPH at 300 MPa reduced the apoptosis rates of FP and EP by 16.52 % and 9.33 %, respectively. All phenolic fractions showed effective inhibition on α-glucosidase and DPP-IV by formation of hydrogen bonding and van der Waals forces. This study explored the feasibility of HPH to enhance the phenolics and bioactivity of peach juice.

10.
Foods ; 13(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38254595

ABSTRACT

This study aimed to explore the potential of umami peptides for lowering blood glucose. Molecular docking results showed that the peptides LADW and EEAEGT bound to the active amino acid residues of α-glucosidase via hydrogen bonds and Van der Waals forces, a finding supported by an independent gradient model (IGM). Molecular dynamics (MD) simulations demonstrated that the peptides LADW and EEAEGT can decelerate the outward expansion of α-glucosidase and reduce amino acid fluctuations at the active site. In vitro findings indicated that the peptides LADW and EEAEGT showed potent inhibitory activity against α-glucosidase, with IC50 values of 4.40 ± 0.04 and 6.46 ± 0.22 mM, respectively. Furthermore, MD simulation and morphological observation results also revealed that LADW and EEAEGT alter starch structure and form weak interactions with starch through intermolecular hydrogen bonding, leading to the inhibition of starch hydrolysis. Peptides inhibit the ability of starch to produce reducing sugars after simulated gastrointestinal digestion, providing additional evidence of the inhibition of starch hydrolysis by the added peptides. Taken together, these findings suggest that consuming the umami peptides LADW and EEAEGT may alleviate postprandial blood glucose elevations via inhibiting α-glucosidase and starch hydrolysis.

11.
Food Chem ; 446: 138806, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38402767

ABSTRACT

High pressure processing (HPP) juice often experiences cloud loss during storage, caused by the activity of pectin methylesterase (PME). The combination of HPP with natural pectin methylesterase inhibitor (PMEI) could improve juice stability. However, extracting natural PMEI is challenging. Gene recombination technology offers a solution by efficiently expressing recombinant PMEI from Escherichia coli and Pichia pastoris. Experimental and molecular dynamics simulation were conducted to investigate changes in activity, structure, and interaction of PME and recombinant PMEI during HPP. The results showed PME retained high residual activity, while PMEI demonstrated superior pressure resistance. Under HPP, PMEI's structure remained stable, while the N-terminus of PME's α-helix became unstable. Additionally, the helix at the junction with the PME/PMEI complex changed, thereby affecting its binding. Furthermore, PMEI competed with pectin for active sites on PME, elucidating. The potential mechanism of PME inactivation through the synergistic effects of HPP and PMEI.


Subject(s)
Carboxylic Ester Hydrolases , Plant Proteins , Plant Proteins/metabolism , Carboxylic Ester Hydrolases/metabolism , Catalytic Domain , Food
12.
J Agric Food Chem ; 72(10): 5368-5378, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38394628

ABSTRACT

This study employed adaptive laboratory evolution to improve the acid tolerance of Lactiplantibacillus plantarum, a vital strain in food fermentation and a potential probiotic. Phenotype and genomic analyses identified the overexpression of stress response proteins, ATP synthases, and transporters as pivotal in conferring acid tolerance to the evolved strains. These adaptations led to a shorter lag phase, improved survival rates, and higher intracellular pH values compared to the wild-type strain under acid stress conditions. Additionally, the evolved strains showed an increased expression of genes in the fatty acid synthesis pathway, resulting in a higher production of unsaturated fatty acids. The changes in cell membrane composition possibly prevented H+ influx, while mutant genes related to cell surface structure contributed to observed elongated cells and thicker cell surface. These alterations in cell wall and membrane composition, along with improved transporter efficiency, were key factors contributing to the enhanced acid tolerance in the evolved strains.


Subject(s)
Lactobacillus plantarum , Probiotics , Cell Membrane , Cell Wall , Fermentation , Genomics , Heat-Shock Proteins , Membrane Transport Proteins
13.
Food Chem X ; 23: 101581, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-39040151

ABSTRACT

The aroma profile of fermented chili pepper was analyzed using gas chromatography-mass spectrometry (GC-MS) coupled with chromatography-olfactometry (GC-O). A total of 19 aroma-active compounds were detected, exhibiting aroma intensities spanning from 1.8 to 4.2. And 12 aroma-active compounds were determined as pivotal odorants through odor activity value (OAV) calculation. Concentrations of these aroma-active compounds were quantified and subsequently employed in reconstructing the aroma profile of fermented chili pepper. Quantitative descriptive sensory analysis and electronic nose analysis proved that the aroma profile of fermented chili pepper was basically reconstituted. Omission experiments confirmed that methyl salicylate, linalool, 2-methoxy-3-isobutylpyrazine, and phenylethyl alcohol were the key aroma-active compounds of fermented chili pepper. Moreover, the perceptual interactions between the key aroma-active compounds were investigated. It was found that methyl salicylate masked the floral aroma, while phenylethyl alcohol had an additive effect on the aroma of linalool and 2-methoxy-3-isobutylpyrazine.

14.
Light Sci Appl ; 13(1): 147, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951501

ABSTRACT

Arrayed waveguide grating is a versatile and scalable integrated light dispersion device, which has been widely adopted in various applications, including, optical communications and optical sensing. Recently, thin-film lithium niobate emerges as a promising photonic integration platform, due to its ability of shrinking largely the size of typical lithium niobate based optical devices. This would also enable multifunctional photonic integrated chips on a single lithium niobate substrate. However, due to the intrinsic anisotropy of the material, to build an arrayed waveguide grating on X-cut thin-film lithium niobate has never been successful. Here, a universal strategy to design anisotropy-free dispersive components on a uniaxial in-plane anisotropic photonic integration platform is introduced for the first time. This leads to the first implementation of arrayed waveguide gratings on X-cut thin-film lithium niobate with various configurations and high-performances. The best insertion loss of 2.4 dB and crosstalk of -24.1 dB is obtained for the fabricated arrayed waveguide grating devices. Applications of such arrayed waveguide gratings as a wavelength router and in a wavelength-division multiplexed optical transmission system are also demonstrated.

15.
J Agric Food Chem ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39082086

ABSTRACT

Irritable bowel syndrome (IBS) is a prevalent functional gastrointestinal disorder characterized by visceral pain and gut dysmotility. However, the specific mechanisms by which Lactobacillus strains relieve IBS remain unclear. Here, we screened Lactobacillus strains from traditional Chinese fermented foods with potential IBS-alleviating properties through in vitro and in vivo experiments. We demonstrated that Lactiplantibacillus plantarum D266 (Lp D266) administration effectively modulates intestinal peristalsis, enteric neurons, visceral hypersensitivity, colonic inflammation, gut barrier function, and mast cell activation. Additionally, Lp D266 shapes gut microbiota and enhances tryptophan (Trp) metabolism, thus activating the aryl hydrocarbon receptor (AhR) and subsequently enhancing IL-22 production to maintain gut homeostasis. Mechanistically, Lp D266 potentially modulates colonic physiology and enteric neurons by microbial tryptophan metabolites. Further, our study indicates that combining Lp D266 with Trp synergistically ameliorates IBS symptoms. Together, our experiments identify the therapeutic efficacy of tryptophan-catabolizing Lp D266 in regulating gut physiology and enteric neurons, providing new insights into the development of probiotic-mediated nutritional intervention for IBS management.

16.
J Cancer ; 15(11): 3427-3440, 2024.
Article in English | MEDLINE | ID: mdl-38817863

ABSTRACT

Purpose: Platinum-based chemotherapy is effective but limited by resistance in high-grade serous ovarian cancer (HGSOC). Single-cell RNA sequencing (scRNA-seq) can reveal tumour cell heterogeneity and subclonal differentiation. We aimed to analyze resistance mechanisms and potential targets in HGSOC using scRNA-seq. Methods: We performed 10× genomics scRNA-seq sequencing on tumour tissues from 3 platinum-sensitive and 3 platinum-resistant HGSOC patients. We analyzed cell subcluster communication networks and spatial distribution using cellchat. We performed RNA-seq analysis on TACSTD2, a representative resistance gene in the E0 subcluster, to explore its molecular mechanism. Results: Epithelial cells, characterized by distinct chemotherapy resistance traits and highest gene copy number variations, revealed a specific cisplatin-resistant cluster (E0) associated with poor prognosis. E0 exhibited malignant features related to resistance, fostering growth through communication with fibroblasts and endothelial cells. Spatially, E0 promoted fibroblasts to protect tumour cells and impede immune cells infiltration. Furthermore, TACSTD2 was identified as a representative gene of the E0 subcluster, elucidating its role in platinum resistance through the Rap1/PI3K/AKT pathway. Conclusions: Our study reveals a platinum-resistant epithelial cell subcluster E0 and its association with TACSTD2 in HGSOC, uncovers new insights and evidence for the platinum resistance mechanism, and provides new ideas and targets for the development of therapeutic strategies against TACSTD2+ epithelial cancer cells.

17.
Nutrients ; 15(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37764863

ABSTRACT

This research aimed to probe the potential alleviative effects of ethanol extracts of Chinese sumac (Rhus chinesis Mill.) fruits against type 2 diabetes mellitus (T2DM) in C57BL/6 mice induced by high-fat/high-fructose diet (HFFD) and streptozotocin. The results showed that the ethanol extracts could significantly regulate blood glucose levels, glycosylated hemoglobin, blood lipids, insulin, and insulin resistance, while also restoring endogenous oxidative stress. Pathological and immunohistochemical analyses revealed that the extracts partially restored the physiological function of islet cells. Furthermore, Western blotting results suggested that the extracts could regulate the protein expression in IRS-1/PI3K/AKT signaling pathway, and immunofluorescence findings demonstrated their potential to promote the translocation of Nrf2 into the nucleus. This study elucidated a novel finding that ethanol extracts derived from Chinese sumac fruits have the potential to alleviate symptoms of T2DM in mice. Moreover, these findings could offer valuable scientific insights into the potential utilization of R. chinensis fruits as nutritional supplement and/or functional food to prevent or ameliorate diabetes.

18.
Food Res Int ; 163: 112224, 2023 01.
Article in English | MEDLINE | ID: mdl-36596153

ABSTRACT

In this study, genomics and metabolomics were combined to reveal possible bio-synthetic pathways of core flavor compounds in pickled chayote via lactic acid bacteria (LAB) fermentation. The Lactiplantibacillus plantarum, Levilactobacillus brevis, and Lacticaseibacillus paracasei were selected as core LAB strains with better flavor-producing ability for chayote fermentation. The genomic results showed L. plantarum contained the largest number of metabolism annotated genes, while L. brevis had the fewest. Besides, the largest number of volatile compounds was detected in chayote fermented by L. plantarum, followed by L. brevis and L. paracasei. Some unique odor-active compounds (aldehydes, esters, and alcohols) and taste-active compounds (amino acids and dipeptides) were produced by different LAB strains. Accordingly, phenylalanine metabolic pathway (M00360), amino acid metabolic decomposition pathway (the Ehrlich pathway) and the anabolic pathway (the Harris pathway), and fatty acid biosynthesis pathway (M00061) were the main biosynthesis pathway involved in the flavor formation via LAB fermentation.


Subject(s)
Lactobacillales , Lactobacillus plantarum , Lactobacillales/genetics , Lactobacillus/metabolism , Lactobacillus plantarum/genetics , Lactobacillus plantarum/metabolism , Alcohols/metabolism , Amino Acids/metabolism , Genomics
19.
Foods ; 12(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36766110

ABSTRACT

This study investigated the prospect of producing cloud-stable orange-based juice by combining high-pressure processing (HPP) with a natural kiwifruit pectin methylesterase inhibitor (PMEI) during chilled storage. Kiwifruit is rich in a PMEI, which greatly improves the cloud loss caused by the pectin methylesterase (PME) demethylation of pectin. The results show that the cloud loss of orange juice occurred after 3 days, while the orange-kiwifruit mixed juice and kiwifruit puree were cloud stable during 28 days' storage. Although, the kiwifruit puree contained larger particles compared to the orange juice, its higher viscosity and solid-like behavior were dominant, improving the cloud stability of the juice systems. In addition, the particle size distribution and rheological properties were highly related to PME activity, PMEI activity, and pectin characterization. The kiwifruit PMEI showed higher resistance to HPP and storage time than PME. More water-solubilized pectin fractions with a high molecular mass were found in the kiwifruit puree, leading to its high viscosity and large particle size, but a more chelator-solubilized pectin fraction with a low esterification degree was observed in the orange juice, resulting in its cloud loss. In general, the outcome of this work provides a novel strategy to improve the cloud stability of orange-based juices using natural PMEIs and nonthermal processing technologies.

20.
Foods ; 12(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37628094

ABSTRACT

Apple cultivars exhibit significant diversity in fruit quality traits, creating distinct consumption scenarios. This study aimed to assess the physicochemical parameters and sensory attributes differences among fifteen apple cultivars and identify characteristic qualities suitable for various processed apple products using chemometric analysis. Relatively large differences were registered between cultivars for deflection, peel color, titratable acidity (TA), the ratio of total soluble solid to titratable acidity (TSS/TA), hardness, soluble sugar, and volatile organic compound contents. Sensory results showed significant differences existed among the preferences for different processed products. Based on the above results, all cultivars could be distinguished into three main clusters. Cluster I (i.e., Aziteke, Bakeai, Magic Flute, Royal Gala, Red General, Red Delicious, and Zhongqiuwang) demonstrated favorable appearance, high sensory scores, and rich aroma volatile compounds, making them suitable for direct consumption. Cluster II (i.e., Fuburuisi, Sinike, Honglu, and Huashuo) exhibited a higher sugar and acid content, making them suitable for apple juice production. Cluster III (i.e., Miqila, Honey Crisp, Shandong Fuji, and Yanfu 3) were more suitable for fresh-cut apples due to their good flavor and undesirable appearance. Several chemometric analyses effectively assessed differences among apple cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL