Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Opt Express ; 32(11): 18480-18492, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38859002

ABSTRACT

Tunability is a fundamental prerequisite for functional devices and forms the backbone of reconfigurable microwave photonic (MWP) signal processors. In this paper, we explore the use of indium tin oxide (ITO) thin films, notable for their combination of optical transparency and electrical conductivity, to provide tunability for integrated MWP devices. We study the impacts of post-thermal annealing on the structural, electrical, and optical properties of ITO films. The annealed ITO microheater maintains a low total insertion loss of just 0.1 dB while facilitating the tunability of the microring across the entire free spectral range (FSR) using less than half the voltage required by its non-annealed counterpart. Furthermore, the post-annealed ITO film exhibits a 30% improvement in response time, enhancing its performance as an active voltage-controlled microheater. Leveraging this advantage, we employed the post-annealed device to demonstrate continuous tunable radio frequency (RF) phase shifts from 0-330° across a frequency range spanning 15 GHz to 40 GHz with only 5.58 mW of power. The flexibility in modifying the ITO thin film properties effectively bridges the gap between achieving low-loss and high-speed thermo-optic based microheaters.

2.
Appl Opt ; 63(14): D59-D66, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38856334

ABSTRACT

In this paper, a reflective microring resonator (MRR)-based microwave photonic (MWP) sensor incorporating a self-attention convolutional neural network (CNN) is presented. An MRR cascaded with an inverse-designed optical reflector is adopted as the sensor probe to allow for utilizing the responses generated from both the clockwise and counterclockwise resonant modes. Through the MWP interrogation, the cascaded resonant modes can be transformed into distinctive deep radio-frequency (RF) spectral notches under different modulator bias conditions. By using a self-attention assisted CNN processing to leverage both the local and global features of the RF spectra, a sensing model with improved accuracy can be established. As a proof of concept, the proposed scheme is experimentally demonstrated in temperature sensing. Even with a small dataset, the root-mean-square error of the sensing model established after training is achieved at 0.026°C, which shows a 10-fold improvement in sensing accuracy compared to that of the traditional linear fitting model.

3.
BMC Palliat Care ; 23(1): 50, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38388378

ABSTRACT

BACKGROUND: Numerous previous research have established the need for spiritual care among patients with cancer globally. Nevertheless, there was limited research, primarily qualitative, on the spiritual care needs of Chinese inpatients with advanced breast cancer. Furthermore, the need for spiritual care was rarely explored using the Kano model. To better understand the spiritual care needs and attributes characteristics of inpatients with advanced breast cancer, this study examined the Kano model. METHODS: A descriptive cross-sectional design study was conducted in the oncology departments of three tertiary grade-A hospitals in China from October 2022 to May 2023. To guarantee high-quality reporting of the study, the Strengthening the Reporting of Observational Studies in Epidemiology Checklist was used. Data on the demographic characteristics questionnaire, the Nurse Spiritual Therapeutics Scale (NSTS), and the Kano model-based Nurse Spiritual Therapeutics Attributes Scale (K-NSTAs) were collected through convenience sampling. The Kano model, descriptive statistics, two independent samples t-tests, and one-way analysis of variance were used to analyze the data. RESULTS: The overall score for spiritual care needs was 31.16 ± 7.85. The two dimensions with the highest average scores, "create a good atmosphere" (3.16 ± 0.95), and the lowest average scores, "help religious practice" (1.72 ± 0.73). The 12 items were distributed as follows: three attractive attributes were located in Reserving Area IV; five one-dimensional attributes were distributed as follows: three one-dimensional attributes were located in Predominance Area I, and two were found in Improving Area II; two must-be attributes were located in Improving Area II; and two indifference attributes were located in Secondary Improving Area III. CONCLUSION: The Chinese inpatients with advanced breast cancer had a middle level of spiritual care needs, which need to be further improved. Spiritual care needs attributes were defined, sorted, categorized, and optimized accurately and perfectly by the Kano model. And "create a good atmosphere" and "share self-perception" were primarily one-dimensional and must-be attributes. In contrast, the items in the dimensions of "share self-perception" and "help thinking" were principally attractive attributes. Nursing administrators are advised to optimize attractive attributes and transform indifference attributes by consolidating must-be and one-dimensional attributes, which will enable them to take targeted spiritual care measures based on each patient's characteristics and unique personality traits.


Subject(s)
Breast Neoplasms , Spiritual Therapies , Female , Humans , Breast Neoplasms/pathology , Breast Neoplasms/psychology , Breast Neoplasms/therapy , China , Cross-Sectional Studies , Inpatients/psychology , Spirituality , Surveys and Questionnaires
4.
Opt Express ; 30(15): 26201-26211, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236815

ABSTRACT

In this paper, we propose a pre-trained-combined neural network (PTCN) as a comprehensive solution to the inverse design of an integrated photonic circuit. By utilizing both the initially pre-trained inverse and forward model with a joint training process, our PTCN model shows remarkable tolerance to the quantity and quality of the training data. As a proof of concept demonstration, the inverse design of a wavelength demultiplexer is used to verify the effectiveness of the PTCN model. The correlation coefficient of the prediction by the presented PTCN model remains greater than 0.974 even when the size of training data is decreased to 17%. The experimental results show a good agreement with predictions, and demonstrate a wavelength demultiplexer with an ultra-compact footprint of 2.6×2.6µm2, a high transmission efficiency with a transmission loss of -2dB, a low reflection of -10dB, and low crosstalk around -7dB simultaneously.

5.
Opt Express ; 30(20): 35608-35623, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258508

ABSTRACT

We present the design, fabrication, and characterization of cascaded silicon-on-insulator photonic crystal microring resonators (PhCMRRs) for dual-parameter sensing based on a multiple resonances multiple modes (MRMM) technique. Benefitting from the slow-light effect, the engineered PhCMRRs exhibit unique optical field distributions with different sensitivities via the excitation of dielectric and air modes. The multiple resonances of two distinct modes offer new possibilities for enriching the sensing receptors with additional information about environmental changes while preserving all essential properties of traditional microring resonator based sensors. As a proof of concept, we demonstrate the feasibility of extracting humidity and temperature responses simultaneously with a single spectrum measurement by employing polymethyl methacrylate as the hydrophilic coating, obtaining a relative humidity (RH) sensitivity of 3.36 pm/%RH, 5.57 pm/%RH and a temperature sensitivity of 85.9 pm/°C, 67.1 pm/°C for selected dielectric mode and air mode, respectively. Moreover, the MRMM enriched data further forges the capability to perform mutual cancellation of the measurement error, which improves the sensing performance reflected by the coefficient of determination (R2-value), calculated as 0.97 and 0.99 for RH and temperature sensing results, respectively.

6.
Opt Express ; 30(19): 34149-34158, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36242435

ABSTRACT

We measure the photothermal nonlinear response in suspended cubic silicon carbide (3C-SiC) and 3C-SiC-on-insulator (SiCOI) microring resonators. Bi-stability and thermo-optic hysteresis is observed in both types of resonators, with the suspended resonators showing a stronger response. A photothermal nonlinear index of 4.02×10-15 m2/W is determined for the suspended resonators, while the SiCOI resonators demonstrate one order of magnitude lower photothermal nonlinear index of 4.32×10-16 m2/W. Cavity absorption and temperature analysis suggest that the differences in thermal bi-stability are due to variations in waveguide absorption, likely from crystal defect density differences throughout the epitaxially grown layers. Furthermore, coupled mode theory model shows that the strength of the optical bi-stability, in suspended and SiCOI resonators can be engineered for high power or nonlinear applications.

7.
Opt Express ; 28(4): 4938-4949, 2020 Feb 17.
Article in English | MEDLINE | ID: mdl-32121724

ABSTRACT

We fabricate suspended single-mode optical waveguides and ring resonators in 3C silicon carbide (SiC) that operate at telecommunication wavelength, and leverage post-fabrication thermal annealing to minimize optical propagation losses. Annealed optical resonators yield quality factors of over 41,000, which corresponds to a propagation loss of 7 dB/cm, and is a significant improvement over the 24 dB/cm in the case of the non-annealed chip. This improvement is attributed to the enhancement of SiC crystallinity and a significant reduction of waveguide surface roughness, from 2.4 nm to below 1.7 nm. The latter is attributed to surface layer oxide growth during the annealing step. We confirm that the thermo-optic coefficient, an important parameter governing high-power and temperature-dependent performance of SiC, does not vary with annealing and is comparable to that of bulk SiC. Our annealing-based approach, which is especially suitable for suspended structures, offers a straightforward way to realize high-performance 3C-SiC integrated circuits.

8.
Opt Express ; 27(10): 14798-14808, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163922

ABSTRACT

We report a novel microwave photonic phase and amplitude control structure based on a single microring resonator with a tunable Mach Zehnder interferometer reflective loop, which enables the realization of a continuously tunable microwave photonic phase shifter with enhanced phase tuning range while simultaneously compensating for the RF power variations. The complimentary tuning of the phase and amplitude presents a simplistic approach to resolve the inherent trade-off between maintaining a full RF phase shift while eliminating large RF power variations. Detailed simulations have been carried out to analyze the performance of the new structure as a microwave photonic phase shifter, where the reflective nature of the proposed configuration shows an effective doubling of the phase range while the amplitude compensation module provides a parallel control to potentially reduce the RF amplitude variations to virtually zero. The phase range enhancement, which is first verified experimentally with a passive only chip, demonstrates the capability to achieve a continuously tunable RF phase shift of 0-510° with an RF amplitude variation of 9 dB. Meanwhile, the amplitude compensation scheme is incorporated onto an active chip with a continuously tunable RF phase shift of 0-150°, where the RF power variations is shown to be reduced by 5 dB while maintaining a constant RF phase shift.

9.
Opt Lett ; 44(7): 1662-1665, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30933116

ABSTRACT

In this Letter, we propose and experimentally demonstrate, to the best of our knowledge, a novel high-performance microwave photonic sensing system employing a reflective double-pass spectrum-slicing sensing scheme, based on low-coherence interferometry in combination with a dispersive medium. The setup is implemented by configuring a double-pass spectrum slicing sensing scheme, which significantly increases the output power level of a low-coherence optical source by approximately 12 dB to compensate for the optical loss of the system. Moreover, since the light passes through the same optical path twice, the conversion efficiency between the applied optical path difference and the dependent radiofrequency (RF) resonance shift is doubled compared to the conventional approaches. It is also possible to realize a very high resolution thanks to the broad bandwidth of the semiconductor optical amplifier (SOA) spectrum. In addition, this SOA-based scheme enables the future realization of a fully integrated sensing system. As an application example, a highly sensitive displacement sensor was investigated, and the experimental results presented a highly linear relationship between the applied OPDs and the RF frequency shifts. The proposed sensing system successfully achieved a high conversion slope of 5.56 GHz/mm and a nearly constant resolution of approximately 124 µm using a Gaussian power density spectrum.

10.
Opt Lett ; 43(1): 70-73, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29328199

ABSTRACT

A novel, highly sensitive integrated sensor based on a silicon-on-insulator microring resonator is proposed and experimentally demonstrated. To achieve a fast-response and cost-effective sensing system, the new structure establishes a linear amplitude comparison sensing function (ACSF) by monitoring the optical powers from both the through port and drop port of an add-drop microring resonator simultaneously, where the contrast of the two ports eliminates the effect of unexpected power fluctuation of the input laser on sensor performance. A highly enhanced linear relationship between the resonant wavelength shift and the ACSF value is achieved with an R-squared value over 0.99. A proof-of-concept experiment for temperature sensing demonstrates an almost constant ACSF with only ±0.9% discrepancy, while the laser power is varied between 0 dBm and -7 dBm.

11.
Opt Express ; 24(5): 4730-4739, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092302

ABSTRACT

We propose and experimentally demonstrate a novel and practical microwave photonic system that is capable of executing cascaded signal processing functions comprising a microwave photonic bandpass filter and a phase shifter, while providing separate and independent control for each function. The experimental results demonstrate a single bandpass microwave photonic filter with a 3-dB bandwidth of 15 MHz and an out-of-band ratio of over 40 dB, together with a simultaneous RF phase tuning control of 0-215° with less than ± 3 dB filter shape variance.

12.
Opt Express ; 23(4): 4033-45, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25836442

ABSTRACT

A novel chirped microwave photonic filter (MPF) capable of achieving a large radio frequency (RF) group delay slope and a single passband response free from high frequency fading is presented. The design is based upon a Fourier domain optical processor (FD-OP) and a single sideband modulator. The FD-OP is utilized to generate both constant time delay to tune the filter and first order dispersion to induce the RF chirp, enabling full software control of the MPF without the need for manual adjustment. An optimized optical parameter region based on a large optical bandwidth >750 GHz and low slicing dispersion < ± 1 ps/nm is introduced, with this technique greatly improving the RF properties including the group delay slope magnitude and passband noise. Experimental results confirm that the structure simultaneously achieves a large in-band RF chirp of -4.2 ns/GHz, centre frequency invariant tuning and independent reconfiguration of the RF amplitude and phase response. Finally, a stochastic study of the device passband noise performance under tuning and reconfiguration is presented, indicating a low passband noise <-120 dB/Hz.

13.
Opt Lett ; 38(7): 1164-6, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23546278

ABSTRACT

A simple microwave photonic processor structure with single passband response, and widely tunable capability, is demonstrated. It is based on the principle of shifted dispersion-induced radio-frequency (RF) fading by using a dual-input Mach-Zehnder electro-optic modulator (EOM) that is fed from a broadband optical source with unbalanced input fiber lengths into the upper and lower arms of the EOM, in combination with a dispersive medium. This topology consequently produces a spectral response equivalent to the curve of the dispersion-induced RF fading that is shifted from the conventional baseband location to high frequencies. Therefore, an equivalent single passband is formed without the requirement of the conventional tap coefficients. Experimental results verify the structure and demonstrate a continuously tunable microwave filter exhibiting shape invariance and a single passband. In addition, the filter response sidelobe suppression is also significantly improved by applying a Gaussian windowed profile to the broadband optical source.

14.
Opt Express ; 20(10): 11517-28, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22565771

ABSTRACT

A new switchable microwave photonic filter based on a novel spectrum slicing technique is presented. The processor enables programmable multi-tap generation with general transfer function characteristics and offers tunability, reconfigurabiliy, and switchability. It is based on connecting a dispersion controlled spectrum slicing filter after the modulated bipolar broadband light source, which consequently generates multiple spectrum slices with bipolarity, and compensates dispersion induced RF degradation simultaneously within a single device. A detailed theoretical model for this microwave photonic filter design is presented. Experimental results are presented which verify the model, and demonstrate a 33 bipolar-tap microwave filter with significant reduction of passband attenuations at high frequencies. The RF response improvement of the new microwave photonic filter is investigated, for both an ideal linear group delay line and for the experimental fiber delay line that has second order group delay and the results show that this new structure is effective for RF filters with various free spectral range values and spectrum slice bandwidths. Finally, a switchable bipolar filter that has a square-top bandpass filter response with more than 30 dB stopband attenuation that can be switched on/off via software control is demonstrated.

15.
Opt Lett ; 37(22): 4699-701, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23164884

ABSTRACT

A new and simple structure for a single passband microwave photonic filter is presented. It is based on using an electro-optical phase modulator and a tunable optical filter and only requires a single wavelength source and a single photodetector. Experimental results are presented that demonstrate a single passband, flat-top radio-frequency filter response without free spectral range limitations, along with the capability of tuning the center frequency and filter bandwidth independently.

16.
Opt Lett ; 37(4): 608-10, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22344122

ABSTRACT

A new technique to realize an array of multiple true-time-delay elements, which can be independently and continuously tuned, is reported. It is based on a WDM parallel signal processing approach in conjunction with a diffraction-based Fourier-domain optical signal processor. Programmable linear optical phase transfer functions are realized to obtain different electrical true-time delays. The technique can scale to a large number of wideband true-time-delay lines, with continuously tunable programmable delay. Results demonstrate multiple true-time-delay elements with independent tuning control and verify the concept by tuning the free spectral range of a microwave photonic notch filter. To our best knowledge, this is the first demonstration of multiple independently controllable true-time-delay lines for microwave photonic systems.

17.
Front Surg ; 9: 1048885, 2022.
Article in English | MEDLINE | ID: mdl-36726954

ABSTRACT

Objective: Previous studies have reported that navigation systems can improve clinical outcomes of intramedullary nailing (IMN) for patients with intertrochanteric fractures. However, information is lacking regarding the relationship between the costs of navigated systems and clinical outcomes. The present research aimed to evaluate the cost-effectiveness of navigated IMN as compared with traditional freehand IMN for patients with intertrochanteric fractures. Methods: A Markov decision model with a 5-year time horizon was constructed to investigate the costs, clinical outcomes and incremental cost-effectiveness ratio (ICER) of navigated IMN for a 70-year-old patient with an intertrochanteric fracture in mainland China. The costs [Chinese Yuan (¥)], health utilities (quality-adjusted life-years, QALYs) and transition probabilities were obtained from published studies. The willingness-to-pay threshold for ICER was set at ¥1,40,000/QALY following the Chinese gross domestic product in 2020. Three institutional surgical volumes were used to determine the average navigation-related costs per patient: low volume (100 cases), medium volume (200 cases) and high volume (300 cases). Results: Institutes at which 300, 200 and 100 cases of navigated IMN were performed per year showed an ICER of ¥43,149/QALY, ¥76,132.5/QALY and ¥1,75,083/QALY, respectively. Navigated IMN would achieve cost-effectiveness at institutes with an annual volume of more than 125 cases. Conclusions: Our analysis demonstrated that the navigated IMN could be cost-effective for patients with inter-trochanteric fracture as compared to traditional freehand IMN. However, the cost-effectiveness was more likely to be achieved at institutes with a higher surgical volume.

18.
Nat Commun ; 13(1): 1851, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35383188

ABSTRACT

Owing to its attractive optical and electronic properties, silicon carbide is an emerging platform for integrated photonics. However an integral component of the platform is missing-an electro-optic modulator, a device which encodes electrical signals onto light. As a non-centrosymmetric crystal, silicon carbide exhibits the Pockels effect, yet a modulator has not been realized since the discovery of this effect more than three decades ago. Here we design, fabricate, and demonstrate a Pockels modulator in silicon carbide. Specifically, we realize a waveguide-integrated, small form-factor, gigahertz-bandwidth modulator that operates using complementary metal-oxide-semiconductor (CMOS)-level voltages on a thin film of silicon carbide on insulator. Our device is fabricated using a CMOS foundry compatible fabrication process and features no signal degradation, no presence of photorefractive effects, and stable operation at high optical intensities (913 kW/mm2), allowing for high optical signal-to-noise ratios for modern communications. Our work unites Pockels electro-optics with a CMOS foundry compatible platform in silicon carbide.

19.
Opt Express ; 19(7): 6231-42, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21451648

ABSTRACT

A single passband microwave photonic signal processor based on continuous time impulse response that has high resolution, multiple-taps and baseband-free response as well as exhibiting a square-top passband and tunability, is presented. The design and synthesis of the frequency response are based on a full systematic model for single passband microwave photonic filters to account for arbitrary spectrum slice shapes, which for the first time investigates the combined effects from both the dispersion-induced carrier suppression effect and the RF decay effect due to the spectrum slice width, to enable the optimum design to be realized by utilizing the carrier suppression effect to improve the filter performance. Experimental results demonstrate a high order microwave filter showing high resolution single passband filtering as well as exhibiting reconfiguration, square-top passband and tunability, for the first time to our best knowledge.


Subject(s)
Computer-Aided Design , Filtration/instrumentation , Models, Theoretical , Optical Devices , Signal Processing, Computer-Assisted/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis , Light , Microwaves , Photons , Scattering, Radiation
20.
Opt Lett ; 36(22): 4440-2, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22089590

ABSTRACT

A microwave photonic quadrature filter, new to our knowledge, based on an all-optical Hilbert transformer is presented. It is based on mapping of a Hilbert transform transfer function between the optical and electrical domains, using a programmable Fourier-domain optical processor and high-speed photodiodes. The technique enables the realization of an extremely wide operating bandwidth, tunable programmable bandwidth, and a highly precise amplitude and phase response. Experimental results demonstrate a microwave quadrature filter from 10 to 20 GHz, which achieves an amplitude imbalance of less than ±0.23 dB and a phase imbalance of less than ±0.5°.

SELECTION OF CITATIONS
SEARCH DETAIL