Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Cell ; 134(3): 534-45, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18692475

ABSTRACT

Many protein-protein interactions are mediated through independently folding modular domains. Proteome-wide efforts to model protein-protein interaction or "interactome" networks have largely ignored this modular organization of proteins. We developed an experimental strategy to efficiently identify interaction domains and generated a domain-based interactome network for proteins involved in C. elegans early-embryonic cell divisions. Minimal interacting regions were identified for over 200 proteins, providing important information on their domain organization. Furthermore, our approach increased the sensitivity of the two-hybrid system, resulting in a more complete interactome network. This interactome modeling strategy revealed insights into C. elegans centrosome function and is applicable to other biological processes in this and other organisms.


Subject(s)
Caenorhabditis elegans/embryology , Embryo, Nonmammalian/metabolism , Embryonic Development , Protein Interaction Mapping , Animals , Cell Division , Protein Interaction Domains and Motifs , Proteome , Two-Hybrid System Techniques
2.
Mol Cell ; 53(6): 1031-1043, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24631284

ABSTRACT

MicroRNA (miRNA) regulation clearly impacts animal development, but the extent to which development-with its resulting diversity of cellular contexts-impacts miRNA regulation is unclear. Here, we compared cohorts of genes repressed by the same miRNAs in different cell lines and tissues and found that target repertoires were largely unaffected, with secondary effects explaining most of the differential responses detected. Outliers resulting from differential direct targeting were often attributable to alternative 3' UTR isoform usage that modulated the presence of miRNA sites. More inclusive examination of alternative 3' UTR isoforms revealed that they influence ∼10% of predicted targets when comparing any two cell types. Indeed, considering alternative 3' UTR isoform usage improved prediction of targeting efficacy significantly beyond the improvements observed when considering constitutive isoform usage. Thus, although miRNA targeting is remarkably consistent in different cell types, considering the 3' UTR landscape helps predict targeting efficacy and explain differential regulation that is observed.


Subject(s)
3' Untranslated Regions , MicroRNAs/genetics , RNA Stability , Uridine/metabolism , Cell Line, Tumor , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , MicroRNAs/metabolism , Organ Specificity , Polymorphism, Genetic , Signal Transduction
3.
Nature ; 487(7407): 370-4, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22722833

ABSTRACT

Novel protein-coding genes can arise either through re-organization of pre-existing genes or de novo. Processes involving re-organization of pre-existing genes, notably after gene duplication, have been extensively described. In contrast, de novo gene birth remains poorly understood, mainly because translation of sequences devoid of genes, or 'non-genic' sequences, is expected to produce insignificant polypeptides rather than proteins with specific biological functions. Here we formalize an evolutionary model according to which functional genes evolve de novo through transitory proto-genes generated by widespread translational activity in non-genic sequences. Testing this model at the genome scale in Saccharomyces cerevisiae, we detect translation of hundreds of short species-specific open reading frames (ORFs) located in non-genic sequences. These translation events seem to provide adaptive potential, as suggested by their differential regulation upon stress and by signatures of retention by natural selection. In line with our model, we establish that S. cerevisiae ORFs can be placed within an evolutionary continuum ranging from non-genic sequences to genes. We identify ~1,900 candidate proto-genes among S. cerevisiae ORFs and find that de novo gene birth from such a reservoir may be more prevalent than sporadic gene duplication. Our work illustrates that evolution exploits seemingly dispensable sequences to generate adaptive functional innovation.


Subject(s)
Evolution, Molecular , Genes, Fungal/genetics , Saccharomyces/genetics , Base Sequence , Conserved Sequence , Genetic Variation , Molecular Sequence Data , Open Reading Frames , Phylogeny , Protein Biosynthesis , Saccharomyces/classification , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/genetics , Sequence Alignment
4.
Nat Methods ; 6(11): 843-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19855391

ABSTRACT

Genes and gene products do not function in isolation but within highly interconnected 'interactome' networks, modeled as graphs of nodes and edges representing macromolecules and interactions between them, respectively. We propose to investigate genotype-phenotype associations by methodical use of alleles that lack single interactions, while retaining all others, in contrast to genetic approaches designed to eliminate gene products completely. We describe an integrated strategy based on the reverse yeast two-hybrid system to isolate and characterize such edge-specific, or 'edgetic', alleles. We established a proof of concept with CED-9, a Caenorhabditis elegans BCL2 ortholog. Using ced-9 edgetic alleles, we uncovered a new potential functional link between apoptosis and a centrosomal protein. This approach is amenable to higher throughput and is particularly applicable to interactome network analysis in organisms for which transgenesis is straightforward.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Protein Interaction Mapping/methods , Proto-Oncogene Proteins c-bcl-2/genetics , Alleles , Amino Acid Sequence , Animals , Binding Sites , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/physiology , Calcium-Binding Proteins/genetics , Genes, Helminth , Genotype , Models, Molecular , Phenotype , Repressor Proteins/physiology , Two-Hybrid System Techniques
5.
Nat Methods ; 6(1): 83-90, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19060904

ABSTRACT

Several attempts have been made to systematically map protein-protein interaction, or 'interactome', networks. However, it remains difficult to assess the quality and coverage of existing data sets. Here we describe a framework that uses an empirically-based approach to rigorously dissect quality parameters of currently available human interactome maps. Our results indicate that high-throughput yeast two-hybrid (HT-Y2H) interactions for human proteins are more precise than literature-curated interactions supported by a single publication, suggesting that HT-Y2H is suitable to map a significant portion of the human interactome. We estimate that the human interactome contains approximately 130,000 binary interactions, most of which remain to be mapped. Similar to estimates of DNA sequence data quality and genome size early in the Human Genome Project, estimates of protein interaction data quality and interactome size are crucial to establish the magnitude of the task of comprehensive human interactome mapping and to elucidate a path toward this goal.


Subject(s)
Protein Interaction Mapping/methods , Proteins/analysis , Proteins/metabolism , Databases, Protein , Humans , Protein Binding , Proteins/genetics , Sensitivity and Specificity
6.
Nat Methods ; 6(1): 47-54, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19123269

ABSTRACT

To provide accurate biological hypotheses and elucidate global properties of cellular networks, systematic identification of protein-protein interactions must meet high quality standards.We present an expanded C. elegans protein-protein interaction network, or 'interactome' map, derived from testing a matrix of approximately 10,000 x approximately 10,000 proteins using a highly specific, high-throughput yeast two-hybrid system. Through a new empirical quality control framework, we show that the resulting data set (Worm Interactome 2007, or WI-2007) was similar in quality to low-throughput data curated from the literature. We filtered previous interaction data sets and integrated them with WI-2007 to generate a high-confidence consolidated map (Worm Interactome version 8, or WI8). This work allowed us to estimate the size of the worm interactome at approximately 116,000 interactions. Comparison with other types of functional genomic data shows the complementarity of distinct experimental approaches in predicting different functional relationships between genes or proteins


Subject(s)
Caenorhabditis elegans Proteins/analysis , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Protein Interaction Mapping/methods , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Line , Humans , Protein Binding , Software
7.
Int J Infect Dis ; 116: 111-113, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34954312

ABSTRACT

OBJECTIVE: This study considered the role of institutional, cultural and economic factors in the effectivemess of lockdown measures during the coronavirus pandemic. Earlier studies focusing on cross-sectional data found an association between low case numbers and a higher level of cultural tightness. Meanwhile, institutional strength and income levels revealed a puzzling negative relationship with the number of cases and deaths. METHODS: Data available at the end of September 2021 were used to analyse the dynamic impact of these factors on the effectiveness of lockdowns. The cross-sectional dimension of country-level data was combined with the time-series dimension of pandemic-related measures, using econometric techniques dealing with panel data. FINDINGS: Greater stringency of lockdown measures was associated with fewer cases. Institutional strength enhanced this negative relationship. Countries with well-defined and established laws performed better for a given set of lockdown measures compared with countries with weaker institutional structures. Cultural tightness reduced the effectiveness of lockdowns, in contrast to previous findings at cross-sectional level. CONCLUSION: Institutional strength plays a greater role than cultural and economic factors in enhancing the performance of lockdowns. These results underline the importance of strengthening institutions for pandemic control.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , Cross-Sectional Studies , Economic Factors , Humans , Pandemics/prevention & control , SARS-CoV-2
8.
Mol Syst Biol ; 5: 321, 2009.
Article in English | MEDLINE | ID: mdl-19888216

ABSTRACT

Cellular functions are mediated through complex systems of macromolecules and metabolites linked through biochemical and physical interactions, represented in interactome models as 'nodes' and 'edges', respectively. Better understanding of genotype-to-phenotype relationships in human disease will require modeling of how disease-causing mutations affect systems or interactome properties. Here we investigate how perturbations of interactome networks may differ between complete loss of gene products ('node removal') and interaction-specific or edge-specific ('edgetic') alterations. Global computational analyses of approximately 50,000 known causative mutations in human Mendelian disorders revealed clear separations of mutations probably corresponding to those of node removal versus edgetic perturbations. Experimental characterization of mutant alleles in various disorders identified diverse edgetic interaction profiles of mutant proteins, which correlated with distinct structural properties of disease proteins and disease mechanisms. Edgetic perturbations seem to confer distinct functional consequences from node removal because a large fraction of cases in which a single gene is linked to multiple disorders can be modeled by distinguishing edgetic network perturbations. Edgetic network perturbation models might improve both the understanding of dissemination of disease alleles in human populations and the development of molecular therapeutic strategies.


Subject(s)
Genetic Diseases, Inborn/genetics , Models, Genetic , Alleles , Disease/genetics , Humans , Mutation/genetics
9.
Nat Biotechnol ; 25(10): 1119-26, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17921997

ABSTRACT

The global set of relationships between protein targets of all drugs and all disease-gene products in the human protein-protein interaction or 'interactome' network remains uncharacterized. We built a bipartite graph composed of US Food and Drug Administration-approved drugs and proteins linked by drug-target binary associations. The resulting network connects most drugs into a highly interlinked giant component, with strong local clustering of drugs of similar types according to Anatomical Therapeutic Chemical classification. Topological analyses of this network quantitatively showed an overabundance of 'follow-on' drugs, that is, drugs that target already targeted proteins. By including drugs currently under investigation, we identified a trend toward more functionally diverse targets improving polypharmacology. To analyze the relationships between drug targets and disease-gene products, we measured the shortest distance between both sets of proteins in current models of the human interactome network. Significant differences in distance were found between etiological and palliative drugs. A recent trend toward more rational drug design was observed.


Subject(s)
Metabolic Networks and Pathways/drug effects , Models, Biological , Systems Biology , Computer Simulation , Databases, Factual , Gene Expression Regulation , Genomics , Humans , Signal Transduction , United States , United States Food and Drug Administration
11.
PLoS One ; 9(8): e104813, 2014.
Article in English | MEDLINE | ID: mdl-25153830

ABSTRACT

Measuring similarities between objects based on their attributes has been an important problem in many disciplines. Object-attribute associations can be depicted as links on a bipartite graph. A similarity measure can be thought as a unipartite projection of this bipartite graph. The most widely used bipartite projection techniques make assumptions that are not often fulfilled in real life systems, or have the focus on the bipartite connections more than on the unipartite connections. Here, we define a new similarity measure that utilizes a practical procedure to extract unipartite graphs without making a priori assumptions about underlying distributions. Our similarity measure captures the relatedness between two objects via the likelihood of a random walker passing through these nodes sequentially on the bipartite graph. An important aspect of the method is that it is robust to heterogeneous bipartite structures and it controls for the transitivity similarity, avoiding the creation of unrealistic homogeneous degree distributions in the resulting unipartite graphs. We test this method using real world examples and compare the obtained results with alternative similarity measures, by validating the actual and orthogonal relations between the entities.


Subject(s)
Algorithms , Computer Simulation , Probability
12.
Cell Metab ; 19(2): 272-84, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24506868

ABSTRACT

The homeostatic balance of hepatic glucose utilization, storage, and production is exquisitely controlled by hormonal signals and hepatic carbon metabolism during fed and fasted states. How the liver senses extracellular glucose to cue glucose utilization versus production is not fully understood. We show that the physiologic balance of hepatic glycolysis and gluconeogenesis is regulated by Bcl-2-associated agonist of cell death (BAD), a protein with roles in apoptosis and metabolism. BAD deficiency reprograms hepatic substrate and energy metabolism toward diminished glycolysis, excess fatty acid oxidation, and exaggerated glucose production that escapes suppression by insulin. Genetic and biochemical evidence suggests that BAD's suppression of gluconeogenesis is actuated by phosphorylation of its BCL-2 homology (BH)-3 domain and subsequent activation of glucokinase. The physiologic relevance of these findings is evident from the ability of a BAD phosphomimic variant to counteract unrestrained gluconeogenesis and improve glycemia in leptin-resistant and high-fat diet models of diabetes and insulin resistance.


Subject(s)
Energy Metabolism/physiology , Gluconeogenesis/physiology , Liver/metabolism , bcl-Associated Death Protein/metabolism , Animals , Energy Metabolism/genetics , Gluconeogenesis/genetics , Mice , Mice, Mutant Strains , Phosphorylation , bcl-Associated Death Protein/genetics
13.
PLoS One ; 5(8): e12139, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20711346

ABSTRACT

Predicting gene functions by integrating large-scale biological data remains a challenge for systems biology. Here we present a resource for Drosophila melanogaster gene function predictions. We trained function-specific classifiers to optimize the influence of different biological datasets for each functional category. Our model predicted GO terms and KEGG pathway memberships for Drosophila melanogaster genes with high accuracy, as affirmed by cross-validation, supporting literature evidence, and large-scale RNAi screens. The resulting resource of prioritized associations between Drosophila genes and their potential functions offers a guide for experimental investigations.


Subject(s)
Drosophila melanogaster/genetics , Genes, Insect/genetics , Genomics/methods , Animals , Databases, Genetic , RNA Interference , Reproducibility of Results
14.
Science ; 322(5898): 104-10, 2008 Oct 03.
Article in English | MEDLINE | ID: mdl-18719252

ABSTRACT

Current yeast interactome network maps contain several hundred molecular complexes with limited and somewhat controversial representation of direct binary interactions. We carried out a comparative quality assessment of current yeast interactome data sets, demonstrating that high-throughput yeast two-hybrid (Y2H) screening provides high-quality binary interaction information. Because a large fraction of the yeast binary interactome remains to be mapped, we developed an empirically controlled mapping framework to produce a "second-generation" high-quality, high-throughput Y2H data set covering approximately 20% of all yeast binary interactions. Both Y2H and affinity purification followed by mass spectrometry (AP/MS) data are of equally high quality but of a fundamentally different and complementary nature, resulting in networks with different topological and biological properties. Compared to co-complex interactome models, this binary map is enriched for transient signaling interactions and intercomplex connections with a highly significant clustering between essential proteins. Rather than correlating with essentiality, protein connectivity correlates with genetic pleiotropy.


Subject(s)
Protein Interaction Mapping , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Computational Biology , Gene Regulatory Networks , Mass Spectrometry , Metabolic Networks and Pathways , Protein Array Analysis , Protein Binding , Protein Interaction Mapping/methods , Protein Interaction Mapping/standards , Proteome/metabolism , Proteomics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/isolation & purification , Signal Transduction , Transcription Factors/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL